
A Baseline Cloud-based Scalable Serverless Architecture
for Batch Processing in Big Data Analytics

Kaustuv Kunal

Abstract. Serverless architectures have become increasingly popular in the
software industry, offering attractive benefits such as cost-effectiveness, rapid
time-to-market, high reliability and reduced maintenance overhead. These,
coupled with the evolving capabilities of public cloud services, have driven a
surge in their adoption, particularly in the domain of big data processing.
However, constructing such complex systems can pose substantial challenges,
particularly for startup organizations with limited expertise. This paper
introduces a baseline serverless architecture tailored for scalable end-to-end
batch log processing, catering to the data processing requirements of data
analytics and mining tasks. The proposed architecture is a four-layer Function-
as-a-Service (FaaS) reference model, showcasing scalable and distribution
capabilities along with ability to be self-maintained. Furthermore, the
architecture is designed to be cost-effective, making it accessible for
deployment leveraging any public cloud platform. One of the noteworthy
features of this architecture is its comprehensive approach to data management,
security, and stakeholder profiling. Moreover, it enhances stakeholder profiling,
offering insights into user behaviours, preferences, and other crucial aspects,
facilitating better decision-making and personalized user experiences.

The proposed serverless architecture is demonstrated through a case study,
showcasing its real-world feasibility and effectiveness. The case study
exemplifies the application of the architecture in addressing actual big data
processing challenges and highlights its advantages.

By adopting this architecture, organizations can streamline their big data
processing pipelines, reducing the complexity and costs associated with
traditional infrastructure management. This approach not only accelerates the
time-to-market for data-mining solutions but also provides a scalable and
efficient framework to handle growing data volumes.

Keywords: Big Data Analytics, Data Mining, Cloud Computing, Serverless
Architecture, Batch Processing, Log Processing, Public Cloud, Reference
Architecture.

1 Introduction

Big data has garnered significant attention in this century, largely driven by the pro-
liferation of the Internet and the exponential growth of digital data. Its impact spans
across diverse sectors, including agriculture, commerce, healthcare, and governance.
As a consequence, the use of big data has become pervasive, with mobile applications
now commonly generating petabytes of data traffic. However, traditional infrastruc-

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

2

ture is ill-equipped to handle the vast volume and complexity of big data, necessitat-
ing specialized architectures.

These specialized architectures are typically distributed in nature, encompassing
crucial stages of data collection, processing, analysis, and visualization. Notably, the
advent of distributed architectures such as Hadoop [6] and its ecosystem [7,8,9,10],
derived from the Google File System (GFS) [5], gained popularity due to their utiliza-
tion of cost-effective commodity hardware. However, deploying and maintaining an
in-house setup of such infrastructure is often impractical for many enterprises. Fortu-
nately, with the evolution of public clouds, a more viable and efficient option
emerged. Public clouds service providers such as, [2,3,4], etc., offered a faster, more
flexible, and cost-effective solution for setting up technological infrastructure. This
shift significantly reduced the burden of infrastructure management and provided
abundant resources and utilities to construct comprehensive processing architectures.

Within the domain of public clouds, the cost considerations are often centered
around the balance between compute and storage instances. Serverless architectures
[1,11], exemplified by models like Function-as-a-Service (FaaS) and Backend- as-a-
Service (BaaS), offer a pay-as-you-go approach, obviating the need for upfront provi-
sioning or server management. These serverless architectures not only reduce infra-
structure and operational costs but also offer enhanced scalability and accelerated
time-to-market.

The paper specifically focuses on a baseline FaaS batch processing architecture,
deliberately designed to leverage any public cloud provider. Notably, one of the chal-
lenges lies in designing an effective serverless batch architecture, especially for or-
ganizations lacking prior experience in this domain. The paper aims to bridge this
knowledge gap and streamline the process, saving valuable time and resources for
enterprises. This sequential layered architecture is tailored for mid and small-sized
companies, as well as institutions aiming for a cost-effective, scalable, and modular
big data batch mining system within the public cloud environment.

To demonstrate the practicality of the proposed baseline architecture, a real-world
use case involving ecommerce campaign log analytics is presented. The implementa-
tion is showcased on Amazon Web Services (AWS) [2], providing insights into the
architecture's applicability and performance.

The structure of the paper is as follows: Related work is discussed in section two,
section three provides essential background information, while section four delves
into the details of the proposed baseline architecture. In section five, the paper pre-
sents the case study, followed by the performance evaluation and limitations in sec-
tion six. Finally, the paper concludes in section seven, summarizing the key findings
and potential avenues for future research.

2 Related Work

To handle the vast and complex data sets, several notable architectures have been
proposed, each addressing specific challenges and requirements in the big data do-
main. One such architecture is the Lambda architecture [35], which seamlessly com-

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

3

bines batch and streaming pipelines within a single unified framework. Comprising
three key layers, it incorporates a batch layer for distributed processing, a serving
layer responsible for incremental indexing of the batch data, and a speed layer de-
signed to complement the serving layer by indexing the most recent data. This archi-
tecture efficiently caters to both historical and real-time data processing needs. An-
other prominent architecture is the Kappa Architecture [36], primarily focused on
streaming systems, with the flexibility to extend to historical batch processing. Pipe-
line [37], Event-driven [38] and microservices architectures [39] are also commonly
leveraged for big data processing applications, each providing distinct advantages in
handling event-driven data and ensuring modular and scalable solutions. Researchers
have proposed big data reference architectures based on the use cases of major tech
giants such as Facebook, Amazon, Twitter, and Netflix [42], which culminated in a
four-layer abstract reference architecture. Subsequently, this reference architecture
was mapped to suit the specific needs of LinkedIn [43]. In [46], a technology-
independent reference architecture for big data systems was introduced, drawing in-
sights from published big data use cases and the associated commercial products.
Moreover, domain-specific processing architectures and frameworks have been sug-
gested for diverse applications, including public transportation [44], cluster monitor-
ing [45], railway asset management [47], manufacturing [48], and AI [49, 50]. Specif-
ically, in the realm of serverless big data processing, some works have explored serv-
erless architectures on specific public cloud platforms. For instance, in [53], an archi-
tecture is presented that utilizes AWS Lambda and Apache Spark libraries to achieve
efficient data processing. Similarly, [54] showcases a serverless architecture built on
IBM Cloud Functions, tailoring it to the specific requirements of big data tasks and
proposes an event-driven serverless architecture based on OpenWhisk [23]and Ku-
bernetes [55], demonstrating the versatility and scalability of serverless solutions.

While the literature review reveals several reference architectures and specific
serverless systems for big data, there remains a gap in the availability of concrete and
coherent reference architectures in the serverless big data context. This highlights the
need for further development in the realm of serverless reference architectures for big
data systems. The absence of comprehensive and standardized serverless architectures
for big data processing underscores the significance of exploring novel approaches to
address the complexities and challenges of managing and processing vast data sets
efficiently and cost-effectively.

3 Background

Logging runtime information is a customary procedure, and the widespread integra-
tion of applications has subsequently resulted in a significant increase in the amount
of log data generated. To handle these massive volumes efficiently and effectively, an
intelligent log analytics platform is essential [34]. Logs, due to their high velocity and
volume, are considered prime candidates for big data processing, and their
timestamped nature makes them valuable for debugging and analysis.

However, log analysis poses several complex challenges:

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

4

• Storage: The continuous generation of logs leads to an exponential increase in size,
which can result in log server failures due to memory limitations. Managing stor-
age and memory requirements becomes a critical concern. 	

• Redundancy: A significant portion of log data may lack meaningful business value,
and redundant entries can frequently occur. Effectively segregating relevant busi-
ness data from the vast log pool is a challenging endeavour. 	

• Structure: The log structure undergoes modification over time due to various fac-
tors, such as internal application code changes or external protocol updates. Ensur-
ing seamless adaptation to these log structure modifications poses a substantial
challenge. 	

• Processing: Many logs are readable text data. Due to their non-serialized nature,
raw logs are not much suitable for fast processing. Additionally, multiple pro-
cessing requirements may apply to the same data, and several jobs may necessitate
simultaneous access to shared data, requiring efficient data access management. 	

• Sources: Log data emanates from diverse sources, including sensors, mobile apps,
websites, etc. Ensuring the timely collection of logs from heterogeneous sources is
a challenging task. 	

• Stakeholders: Big analytics systems are accessed by multiple stakeholders, war-
ranting the implementation of intelligent access management and user profiling to
uphold data security and privacy. 	
In response to these challenges, cloud computing has emerged as a compelling so-

lution capable of handling the high production rate, large size, and diversity of log
files. Companies such as Facebook, Google, Microsoft, Amazon, eBay, etc., have
successfully adopted cloud computing for log processing, substantiating log analysis
as a viable cloud use case. Among various cloud computing approaches, the rising
popularity of serverless big data processing based on FaaS platforms is evident both
in industry and research circles. FaaS platforms offer developers the convenience of
defining their applications solely through a set of service functions, thereby relieving
them from the burdensome task of infrastructure management, which is seamlessly
automated by the platform. The multifaceted challenges in log analysis and the bene-
fits of cloud computing, particularly serverless big data processing using FaaS plat-
forms, underscore the relevance and potential of leveraging such architectures for the
development of intelligent log analytics systems. 	

4 The Architecture

This baseline end-to-end cloud-based architecture is crafted for the processing of
timestamped log data across diverse domains. Employing a FaaS paradigm, the archi-
tecture is structured into four modular layers, each offering distinct entity options.
The input to our layered architecture is derived from a log server (or any storage da-
taset), with the output directed towards analytics or modeling backends. Data is con-
ventionally organized into time-ranged folders. Each layer within the architecture is
assigned a specific function, and the associated techniques are elucidated in the initial

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

5

part of this section. The architecture leverages three primary cloud components: first,
storage units; second, compute instances; and third, messaging channels. These com-
ponents and their integrations are comprehensively discussed in the latter part of this
section.

4.1 The Layers

The architecture comprises four consecutive layers: Fetch, Transform, Process, and
Customize, as illustrated in Fig 1. Each layer is designed to function as a server, exe-
cuting a specialized task and forwarding the processed data to the subsequent layer.
These layers can be viewed as independent ETL units, collectively orchestrating the
data processing pipeline. Moreover, each layer operates concurrently, processing its
respective time unit data parallelly.

Fig. 1. Four sequential FaaS layers

The Fetch layer, In the initial layer, data retrieval from an external log server occurs
without any modification. This process involves periodic polling, followed by a
straightforward copy operation. Concurrent polling of the last n folders containing
timestamped log data (organized as time-labeled folders) is executed to identify any
new arrivals. Each log folder signifies a unit of time, such as an hour. The value of n
should be sufficiently large to accommodate potential delays and out-of-memory
errors. An optimal approach to determining n involves assigning it the value corre-
sponding to the maximum delayed arrival, as represented by equation-(1).

 n = max(l) (1)

Here, l denotes the measured list of data latencies. However, n may assume a large
enough value. A more refined approach involves employing box plot boundary val-
ues. Equation-(2) presents a quartile-based formula for calculating n, where Q3 and
IQR represent the third quartile and interquartile range, respectively.

 n = Q3(l) +IQR(l)*1.5 (2)

The Fetch layer primarily endows the architecture with independence from external
systems, such as log servers, ensuring that the system possesses ample data for de-
bugging, validation requirements, and potential data mismatches. Moreover, a dynam-
ic mechanism involving the recording of data arrival details in a meta file and a
scheduled job for periodic computation of quartile and n values is suggested. The

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

6

fetched data is stored in a bucket-based cloud storage system, with various storage
options explored in the initial part of the subsequent section. Additionally, this section
encompasses tasks such as the conversion of heterogeneous logs into a homogeneous
format, elimination of duplicate entries, and the provision of pre-ingestion and post-
ingestion checks.

The Transform layer’s, main objective is to optimize the processing speed of the
raw logs. Given that plain row logs tend to be slow to process, transforming them into
a machine-readable binary format, a process known as Serialization, can significantly
expedite the data processing pipeline. Additionally, other transformation techniques,
such as indexing and compression, shall also applied to enhance the extraction and
storage efficiency of data.

Numerous data formats are accessible for transformation, and the selection of the
appropriate format is contingent upon various factors, including the log properties,
processing objectives, and data evolution requirements. Some of the commonly used
conversion formats are Parquet [13,14], Avro [15] and ORC [16]. Selection of the
appropriate format involves considering factors such as the log structure, processing
type, and data fields modification capabilities. For nested structures, formats like
Parquet, Avro, or JSON are well-suited. Parquet is preferable for compression-heavy
requirements, while Avro excels in handling schema evolution. Columnar formats are
recommended for selective processing, such as SQL queries, whereas row formats are
more suitable for ETL operations. Additionally, the use of compression techniques,
such as Snappy, LZ4, etc., shall be applied on a case-by-case basis in order to further
optimize the process. It is important to note that the Transformation layer is optional
and can be bypassed if the raw logs are already pre-formatted. Upon transformation of
the data, the subsequent step involves data processing.

The Data Processing Layer, serves as the central core of the architecture, taking on
the crucial responsibility of executing vital big data processing tasks. In the realm of
serverless compute instances, it is important to acknowledge that metastore-based
frameworks like Hive are ill-suited. Therefore, data processing occurs within compute
units, which leverage specific processing frameworks. This approach ensures efficient
resource utilization, with compute instances being occupied solely for the duration of
execution. The selection of the appropriate processing framework depends on the
specific processing requirements. Among the myriad of available options, frameworks
such as Spark [17], Cascading [18], Beam [19], NiFi [20], Flume [56] and Tez [57]
are viable candidates. Interested parties can gather in-depth information about each
framework from their respective project websites. These frameworks offer support for
an extensive array of data processing tasks, encompassing iterative jobs, stream pro-
cessing, graph processing, and machine learning. Resource optimization is achieved
by ensuring that compute instances are utilized only during the execution of pro-
cessing tasks, thus minimizing idle time and maximizing efficiency. While selecting a
processing framework, it is crucial to consider not only the log structure and pro-

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

7

cessing requirements (such as mining, retrieval, and prediction) but also the availabil-
ity of programming resources within the organization.

The Customization Layer, plays an integral role in interacting with external systems.
Within this layer, the processed data undergoes further customization to cater to the
specific micro requirements of various tasks, such as report generation, modeling,
sampling, visualization etc,. The necessity for identical data across various platforms,
including databases, visualization tools, analytics systems, and data science modeling
frameworks, is a commonplace scenario, albeit with nuanced variations. This layer
meets these requirements by generating diverse data variants. Furthermore, the layer
facilitates the seamless transfer of data either directly to the frontend or to the respec-
tive backend systems, enabling smooth data flow across the architecture. To expedite
the setup and tuning processes, specific metadata relevant to each client is attached,
ensuring personalized and efficient data processing. Flexibility is a key feature of the
Customization Layer, as it allows logic to be implemented using any programming or
scripting language. This feature grants users the freedom to adopt languages that best
suit their requirements and expertise, thereby enhancing the versatility and adaptabil-
ity of the architecture.

4.2 The Components

The proposed serverless architecture is depicted in Fig 2. It has three main compo-
nents: the storage unit (SU), the computation unit (CU), and the messaging queue
(MQ). We will examine each of these components one at a time.

Fig. 2. Serverless Architecture Overview

The Storage Unit (SU), serves as a crucial component in the architecture, responsible
for the storage of data across different layers. Each layer, except layer-4 i.e., Custom-
ization layer, possesses a dedicated storage unit. In designing these storage units,
several desirable characteristics are considered, including robust support for rich
APIs, archival capabilities, self-hosting ability, and cost-effectiveness. Bucket-based
storage solutions are favoured in serverless systems due to their efficient data organi-
zation and management. Data compression support is a significant aspect of these
storage units, as once data undergoes transformation, processing, and customization,

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

8

the historical data is primarily required only during validation and debugging stages.
Regular data compression aids in optimizing storage space contributing to overall
system efficiency.

In the context of public cloud environments, various options for storage units are
available. Amazon Simple Storage Service (S3), offered by AWS, is an early pioneer
in object storage, enabling users to upload vast amounts of data without worrying
about storage limitations. It offers provisions for storing both low-latency data (S3-
standard) and archival data (S3-Glacier), with seamless data transfer between storage
types through lifecycle management mechanisms. Despite its advantages, users need
to be mindful of security practices and the choice of regions for optimal performance.
GCP Cloud Storage Buckets present a storage and retrieval system supported by
Google's reliable and high-speed networking infrastructure. This system efficiently
handles data operations while ensuring security and cost-effectiveness. Google Cloud
Storage Buckets are classified into four performance tiers: standard, nearline, cold-
line, and archive, catering to diverse storage requirements. Azure Blob Storage is
designed to store and retrieve highly scalable and unstructured data as Binary Large
Objects (BLOBs). It offers various storage tiers, such as hot storage for frequently
accessed data, cool storage for less frequently accessed data, and archival storage for
data with rare access needs.

Additionally, notable bucket storage options are available from IBM [21] and Ora-
cle [22], each offering specific features and capabilities in the cloud storage land-
scape. The choice of a suitable storage unit depends on factors such as data access
patterns, performance requirements, budget constraints, and the specific needs of the
architecture. Selecting the most appropriate storage unit is a crucial decision, as it
directly impacts the overall efficiency, scalability, and cost-effectiveness of the serv-
erless architecture.

The Computation Unit, serves as the core of the serverless architecture, executing
code after fetching data from storage units. Each layer has an intended compute unit,
and its desirable qualities include dynamic memory allocation, auto-scaling, and sup-
port for microservice architecture. Noteworthy design candidates encompass:

AWS Elastic Beanstalk, streamlines the provisioning, scaling, and load balancing
processes, simplifying the deployment of applications. Its strong support for Docker
containers allows for flexible application deployment, and it offers compatibility with
various server environments such as Apache HTTP Server, Nginx, Microsoft IIS, and
Apache Tomcat.

AWS Lambda, positioned as one of the pioneering Function-as-a- Service (FaaS)
platforms on the public cloud, AWS Lambda revolutionizes serverless computing by
enabling code execution without the burden of server management. This micro-
services environment allows for scalable execution of code for diverse application
types and backend services, with the added advantage of cost-effectiveness through
its pay-as-you-go model based on compute time consumption. Google App Engine
(GAE), emerges as Google Cloud's fully managed serverless application platform,
equipped with automatic scaling-up and scaling-down capabilities for applications. It
streamlines infrastructure concerns, including patching, server management, load
balancers, and built-in mem-cache functionalities, allowing developers to focus solely

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

9

on application development and functionality. Google Cloud Functions, a scalable
and pay-as-you-go FaaS platform, Google Cloud Functions empowers users with
serverless code execution, without the complexities of server provisioning and man-
agement. It facilitates automatic scaling based on workload demands and boasts inte-
grated monitoring, logging, and debugging features. Additionally, this platform en-
sures security at both the role and per function level, adhering to the principle of least
privilege. Google Cloud Run - this serverless compute platform stands out as an effi-
cient solution for running stateless containers that can be invoked via HTTP requests.
By operating on a fully managed and pay-as-you-use basis, Cloud Run offers a cost-
effective approach to computing, as users are only charged for the resources utilized
during container execution. Microsoft Azure Functions - positioned as a serverless
computing service within the Microsoft Azure public cloud, Azure Functions enables
developers to execute small code pieces written in a variety of programming lan-
guages, including Node.js, C#, Python, PHP, and Java. This platform allows for on-
demand code execution without the need for underlying infrastructure management,
simplifying application development and deployment processes. Microsoft Azure App
Service: Designed to facilitate rapid development, deployment, and scaling of web
apps and APIs, Azure App Service offers a versatile platform to meet diverse applica-
tion needs.

The choice of the most appropriate computation unit depends on the specific re-
quirements of the application, workload characteristics, and the availability of tech-
nical expertise within the organization. Each design candidate presents unique attrib-
utes that cater to various serverless computing scenarios, offering researchers and
practitioners a diverse array of options to match their specific use cases and perfor-
mance objectives.

Message Queues, play a crucial role as communication units within the proposed
serverless architecture, primarily used for triggering compute units while also main-
taining execution state and tracking the status of time-folders. Each time-folder is
associated with a specific Message Queue, and these queues enable concurrent pro-
cessing of messages. The asynchronous nature of communication ensures that each
message is processed only once by a single consumer, typically the compute instance,
making it a one-to-one or point-to-point communication pattern. The integration of
Message Queues offers numerous benefits, including scalability, testability, maintain-
ability, and flexibility to the overall architecture, enhancing its robustness and adapta-
bility to varying workloads.

Several candidates for Message Queue implementations exist, each catering to dif-
ferent use cases and performance requirements. Some notable options are as follows:
Apache Kafka [24]; as an open-source event streaming platform, Apache Kafka ex-
cels in messaging, stream processing, data integration, and data persistence. It is de-
signed to handle very high throughput, capable of processing thousands of messages
per second, making it well-suited for stream processing scenarios. RabbitMQ [25];
known for its lightweight nature and ease of deployment, RabbitMQ is highly adapta-
ble, supporting multiple messaging protocols. It can be deployed in distributed and
federated configurations, making it suitable for high-scale and high-availability de-
mands. With broad compatibility across various operating systems and cloud envi-

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

10

ronments, RabbitMQ provides an array of developer tools supporting popular pro-
gramming languages. Amazon SQS i.e., Amazon Simple Queue Service [26] by AWS
is a fully managed message queuing service, empowering developers to decouple and
scale microservices, distributed systems, and serverless applications. SQS streamlines
message-oriented middleware management, allowing developers to concentrate on the
distinctive aspects of their work. It offers two types of message queues, Standard and
FIFO, each designed to address specific delivery requirements and ordering guaran-
tees. Google Cloud Pub/Sub [27]; this scalable and durable event ingestion and mes-
sage delivery system enables the creation of infrastructure for handling message
queues. Utilizing topics and subscriptions as its core components, Pub/Sub offers low-
latency and durable messaging, ensuring all messages sent to a specific topic are de-
livered to all attached subscriptions. GCP Cloud Tasks [28], represents a fully man-
aged queuing system service for Google Cloud Platform, facilitating the management,
dispatch, and delivery of a large number of distributed tasks. It excels in performing
work asynchronously outside user or service-to-service requests. Azure Queue Stor-
age [29]; an entity in the Azure cloud infrastructure, Queue Storage allows storage of
a vast number of messages accessible worldwide via authenticated HTTP or HTTPS
calls. With support for message sizes up to 64 KB and the ability to accommodate
millions of messages, it is an ideal choice for creating backlogs of work to process
asynchronously. Azure Service Bus [30]; this component forms part of the broader
Azure messaging infrastructure, enabling queuing, publish/subscribe, and advanced
integration patterns. Designed to integrate applications or application components that
span multiple communication protocols, data contracts, trust domains, or network
environments, Azure Service Bus offers a comprehensive solution for message han-
dling and communication.

In conjunction with Message Queues, the architectural framework encompasses
supplementary elements such as local or remote job invocation nodes (for instance,
AWS Elastic Compute Cloud), mechanisms for remote procedure calls (RPC), and
Continuous Integration/Continuous Deployment (CI/CD) deployable mechanisms like
Jenkins [33]. The heterogeneous assortment of these constituents presents researchers
and practitioners with a spectrum of choices to customize the serverless architecture
to precise utilization scenarios and objectives pertaining to performance.

5 Case-Study

Introducing a case study that has been executed by leveraging the proposed architec-
tural framework. This serves as both a reference architecture and a means to compre-
hend the overarching structure, encompassing related functionalities and data flows.

Advertisers seek insights into their campaigns to refine them further. The voluminous
data generated from campaigns necessitates processing through big data technologies,
especially for analytics and modeling purposes. When a user clicks on an ad, their
activities are logged into the campaign log server. The evaluation of a publisher's ad
involves various parameters primarily, location, device, operating system, and user

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

11

profile. Additionally, predictions are required for metrics like Click-Through Ratio
(CTR), Cost-Per-Mile (CPM), Cost-Per-Click (CPC), among others.

Utilizing the proposed architecture, a FaaS based campaign analytics system was
developed and deployed on the AWS platform. Each campaign's data is processed in
parallel and independently of others. AWS S3 serves as the storage unit, while AWS
Lambda acts as the compute unit. Due to our minimal constant queue data require-
ments, AWS SQS was deemed both suitable and cost-effective. This system contains
meta-information, primarily comprising time (year, month, day, hour), layer, publish-
er, and campaign information. The overall implementation is illustrated in Fig 3. Sub-
sequently, we will delve into the four layers of the system.

Fig. 3. Architecture Implementation Using AWS

5.1 Fetch Layer: Data Acquisition and Preliminary Processing

The acquisition of real-time data initiates with the depositing of live data into the log
server, segregated into discrete hourly data-folders. These campaign log servers, man-
ifested as Amazon Elastic Compute Cloud (EC2) instances, become subjects of a
systematic polling mechanism that retrieves newly arrived data for the preceding sev-
en days. This polling is effectuated through a Spring-based REST framework, with
the polling operation scheduled to recurrently transpire every hour. Upon detecting
new data arrivals, a twofold process ensues. Firstly, the fresh data is copied into an
AWS S3 bucket, thereby ensuring data persistence. Simultaneously, a consequential
event transpires in the form of the generation of an AWS SQS message. The orches-
tration of this process transpires within the realms of AWS Lambda, a serverless
compute service endowed with the prerogatives of provisioning, scaling, and runtime
management. Of particular importance is the metadata contained within the SQS mes-
sage, a metadata repository that predominantly delineates the data-folder designation
and the intended invocation stratum for subsequent processing stages.

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

12

5.2 Transform Layer: Data Refinement and Formatting

The transform layer is invoked by SQS messages generated in the fetch layer. The
jobs that run in the transform layer are serverless compute instances, specifically
AWS Lambda functions. These functions generate the S3 path from the message con-
tent and then fetch the plain log data from the path. The transformation process is then
initiated.

For data formatting, Avro is the preferred choice. This is mainly due to two rea-
sons. First, Avro has robust support for schema evolution. This means that the schema
of the data can change over time without breaking the existing code. Second, Avro is
compatible with JSON, which is the format of our majority of log structures. This
makes it easy to read and write Avro data.

Since no field preference is specified by the client, all log fields are treated as
equally important. This means that no field is dropped or ignored during the transfor-
mation process. Columnar storage is not preferred in this case because it would re-
quire us to specify which fields are important.

Once the transformation is complete, the Avro files are transferred to a separate
transformation S3 bucket. Finally, an SQS message is generated for the transformed
time-folder. This message invokes the next layer in the process.

5.3 Process Layer: Data Aggregation and Structured Processing

The workflow in this layer mirrors that of the transform layer, with the input bucket
designated as the transform layer’s S3 bucket and the output directed to the process
layer’s bucket. Three primary processing frameworks are employed based on the
processing requirements: MapReduce, Cascading, and Spark. Spark, while the fastest,
incurs higher costs due to elevated memory demands. MapReduce initially met our
requirements at a reasonable cost, while Cascading reduced development cycles with
its concise code structure [31]. Microservice architectures like CloudBreak [32] are
found to be beneficial for job execution and transferability in this layer. The predomi-
nant output data format is .csv files. The jobs primarily involve summarization across
various sectors such as location, device model, publisher, operator, referrer, etc.,
based on temporal factors such as daily, monthly, yearly, etc.

5.4 Customize Layer: Tailoring and Dissemination of Processed Data

Upon the completion of the transformation and processing stages, the customization
layer is invoked. Multiple client-facing jobs execute within the serverless compute
instances, catering to two main categories of applications. Firstly, an analytics system
for visualizing campaign data, where summarized data is stored in MySQL through
Java-based jobs utilizing JDBC. Secondly, Data Science (DS) applications for predic-
tive analysis, where DS jobs, written in Python, consume .csv files from S3. This
layer is accessible to various developer groups and stakeholders, with multiple data-
level access control groups defined to facilitate efficient data access, management,

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

13

and security. For code management and version control, Git is employed, while Ma-
ven and Jenkins are chosen for build and CI/CD deployment, respectively.

6 Performance & Limitations

More than two dozen live ad campaigns were successfully supported by the deployed
system. The largest campaign witnessed the generation of close to a million records
per day. Initially, timeout errors and occasional hanging issues were experienced in
the serverless compute instances of the process layer for long-running applications.
The resolution involved code modifications and the activation of the restartability
feature. Subsequently, a checkpoint mechanism was introduced to address potential
data loss concerns. Due to non-disclosure agreements with clients, detailed AWS
component configurations, specific data processing specifications, and performance
evolution details have not been disclosed.

In terms of limitations, a polling strategy is employed to capture delayed data for
the last 'n' days, with the default 'n' set at seven (i.e., a week). The processing of de-
layed files necessitates the reprocessing of entire folders, leading to redundancy and
multiple processing instances. This issue is mitigated by the introduction of transac-
tion IDs mapped to each time folder, followed by the removal of older entries in the
case of duplicate transaction IDs. However, the impact of this limitation has been
minimal, given the relatively modest hourly folder sizes (ranging between 2 to 100
megabytes) and processing times typically not exceeding a few minutes. Consequent-
ly, the incorporation of this feature has been made optional.

Additionally, as the architecture is designed for public cloud use, it is advised
against its utilization for applications involving classified data, such as those in the
banking sector. Furthermore, the system is inherently susceptible to typical drawbacks
associated with serverless architectures [41], including the absence of mechanisms for
pushing computation closer to data.

7 Conclusion

The paper introduces a cloud-based serverless architecture for analytical mining by
leveraging big data log processing techniques & libraries. The proposal explores vari-
ous components and techniques that shall be leveraged in the layered architecture,
offering a comparative analysis. Additionally, a case study demonstrates the imple-
mentation of the suggested architecture in ecommerce campaign analytics on AWS.
Evidently, the modular architecture, characterized by a FaaS foundation and a four-
layer structure, exhibits versatility across a wide spectrum of ETL tasks, yielding
harmonized outcomes. Particularly, enterprises seeking a cost-efficient and rapid in-
frastructure or a preliminary proof-of-concept setup within the public cloud domain
stand to benefit from the foundational framework outlined in this study. Noteworthy
attributes of this architecture extend beyond the conventional advantages of serverless
paradigms, as it not only demonstrates enhanced scalability and self-maintenance
capabilities but is also encapsulated within Docker containers. This encapsulation

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

14

augments access control mechanisms, profile management, and reinforces data securi-
ty protocols, underscoring the robustness of the architecture.

In terms of prospective directions, the forthcoming endeavours encompass the
formulation of integrated baseline architectures tailored for real-time processing con-
texts. Furthermore, the paper aims to extend its purview towards accommodating deep
learning and natural language processing frameworks within the architecture's over-
arching framework.

References

1. M Eriksen, “Your Server as a Function”, In Proceedings of the 7th Workshop on Pro-
gramming Languages and Operating Systems, 5:1--5:7, (2014).

2. Amazon-Web-Services, https://aws.amazon.com, last accessed 2024/01/01.
3. Google Cloud, https://cloud.google.com, last accessed 2024/01/01.
4. Microsoft Azure, https://azure.microsoft.com, last accessed 2024/01/01.
5. Ghemawat Sanjay, et al., The Google File System. Proceedings of the nineteenth ACM

symposium on Operating systems principles, Bolton Landing, NY, USA. October 19-22,
(2003).

6. Apache Hadoop Project, http://hadoop.apache.org, last accessed 2024/01/01.
7. Apache Hive Project, https://hive.apache.org/, last accessed 2024/01/01.
8. Apache HBase Project, https://hbase.apache.org/, last accessed 2024/01/01.
9. Apache Oozie Project, https://oozie.apache.org/, last accessed 2024/01/01.

10. Apache Sqoop Project, https://sqoop.apache.org/, last accessed 2024/01/01.
11. Baldini, et al. “Serverless computing: Current trends and open problems,” in

arXiv:1706.03178v1 (2017).
12. Kuhlenkamp, et al. An evaluation of faas platforms as a foundation for serverless big data

processing. In Conference on Utility and Cloud Computing, UCC'19, pages 1--9, New
York, NY, USA, 2019.

13. S. Melnik et al. Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endow.,
3:330--339, Sept (2010).

14. Parquet Project, https://parquet.apache.org, last accessed 2024/01/01.
15. Apache Avro Project, https://avro.apache.org,last accessed 2024/01/01.
16. ORC project, https://orc.apache.org/,last accessed 2024/01/01.
17. Spark Project, https://spark.apache.org, last accessed 2024/01/01.
18. Cascading, https://www.cascading.org, last accessed 2024/01/01.
19. Apache Beam, https://beam.apache.org/, last accessed 2024/01/01.
20. Apache Nifi Project, https://nifi.apache.org/,last accessed 2024/01/01.
21. IBM Object Storage, https://www.ibm.com/products/cloud-object-storage, last accessed

2024/01/01.
22. Oracle Object Storage, https://docs.oracle.com/en-

us/iaas/Content/Object/Concepts/objectstorageoverview.htm, last accessed 2024/01/01.
23. Apache OpenWhisk Project, https://openwhisk.apache.org, last accessed 2024/01/01.
24. Kafka Project, https://kafka.apache.org, last accessed 2024/01/01.
25. RabbitMQ, https://www.rabbitmq.com, last accessed 2024/01/01.
26. Amazon-SQS, https://aws.amazon.com/sqs, last accessed 2024/01/01.
27. GCP- Pub/Sub, https://cloud.google.com/pubsub, last accessed 2024/01/01.
28. GSP- Tasks, https://cloud.google.com/tasks, last accessed 2024/01/01.

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

15

29. Azure - Storage Queues, https://azure.microsoft.com/en-in/services/storage/queues, last
accessed 2024/01/01.

30. Azure - Service Bus Messaging, https://docs.microsoft.com/en-us/azure/service-bus-
messaging/, last accessed 2024/01/01.

31. K Kunal “Analysing Cascading over MapReduce”, proceedings of International journal of
Computer Applications (IJCA), 9(1): 1–5, November, last accessed 2024/01/01.

32. CloudBreak Project, https://docs.cloudera.com/HDPDocuments/Cloudbreak, last accessed
2024/01/01.

33. Jenkins, https://www.jenkins.io, last accessed 2024/01/01.
34. Z Zheng, Z Lan, BH Park, A Geist , System log pre-processing to improve failure predic-

tion, IEEE/IFIP International Conference on Dependable Systems & Networks, (2009).
35. Big Data Principles and Best Practices of Scalable Realtime Data Systems by Nathan Mar,

(2015).
36. Kappa Architecture, http://milinda.pathirage.org/kappa-architecture.com, last accessed

2024/01/01.
37. Pipeline Architecture, CV Ramamoorthy, HF Li, ACM Computing Surveys (CSUR),

(1977)
38. Event-Driven Architecture Overview By Brenda M. Michelson, Elemental Links, Patricia

Seybold Group, (2006).
39. Microservices Architecture Enables DevOps: An Experience Report on Migration to a

CloudNative Architecture A Balalaie, A Heydarnoori, P Jamshidi - IEEE Software, (2016).
40. Serverless computing: Current trends and open problems, Baldini, I.; Castro, et al.. In Re-

search Advances in Cloud Computing; Springer: Berlin/Heidelberg, Germany, (2017).
41. Serverless computing: One step forward, two steps back. Hellerstein, J.M.; et.

arXiv:1812.03651, (2018).
42. A reference architecture for big data systems, Sang GM, et al., The 10th international con-

ference on software, knowledge, information management & applications (SKIMA),
Chengdu, China, 15–17, p. 370–5, December, (2016).

43. Simplifying Big Data Analytics Systems with A Reference Architecture, Sang GM, et al..,
The 18th IFIP WG 5.5 working conference on virtual enterprises, Vicenza, Italy, 18–20, p.
242–9, September, (2017).

44. BIGSEA: A Big Data analytics platform for public transportation information, Andy
S.Alic, et.al., Future Generation Computer Systems, Volume 96, Pages 243-269, July
(2019).

45. A Cloud Service Architecture for Analyzing Big Monitoring Data, Samneet Singh and Yan
Liu, Tsinghua Sci. Technol., vol. 21, no. 1, pp. 55–70,Feb. (2016).

46. Reference Architecture and Classification of Technologies, Products and Services for Big
Data Systems. Pekka Paakkonen, Daniel Pakkala, Big Data Research, Volume 2, Issue
4,Pages 166-186, December (2015).

47. Requirements for Big Data Adoption for Railway Asset Management, P. Mcmahon et.al,
IEEE Access, VOLUME 8, (2020).

48. Advancing manufacturing systems with big-data analytics: A conceptual framework,
Dominik Kozjek et.al, International Journal of Computer Integrated Manufacturing, Vol.
33, NO. 2, 169–188, (2022).

49. HPE Reference Architecture for AI on HPE Elastic Platform for Analytics (EPA) with
Tensor Flow and Spark, Whitepaper, HPE, (2018).

50. Lui K., Karmiol J. AI Infrastructure Reference Architecture IBM Systems,
87016787USEN-00. https://www.ibm.com/downloads/cas/W1JQBNJV, 2023.

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

16

51. A Preliminary Review of Enterprise Serverless Cloud Computing (Function-as-a-Service)
Platforms, Theo Lynn, et.al, IEEE 9th International Conference on Cloud Computing
Technology and Science; (2017).

52. Towards Distributed Containerized Serverless Architecture in Multi Towards Distributed
Containerized Serverless Architecture in Multi Cloud Environment, Boubaker Soltani
et.al., The 15th International Conference on Mobile Systems and Pervasive Computing,
Procedia Computer Science 134, 121–128, (2018).

53. Serverless Data Analytics with Flint, Youngbin Kim, et.al, IEEE 11th International Con-
ference on Cloud Computing (CLOUD),(2018).

54. Leveraging the Serverless Architecture for Securing Linux Containers, Nilton Bila, et. al.,
IEEE 37th International Conference on Distributed Computing Systems Workshops
(ICDCSW), June (2017).

55. Kubernetes, https://kubernetes.io, last accessed 2024/01/01.
56. Apache Flume, https://flume.apache.org, last accessed 2024/01/01.
57. Apache TEZ, https://tez.apache.org,last accessed 2024/01/01.

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

Paper Under Review, Distribution Prohibited

