Hive

Kaustuv Kunal

https://github.com/kaustuvkunal/Hive-Tutorial

QOutline

1. Introduction 8. Storage Format

2. Versions Evolution 9. Indexing, Logging

3. Architecture & & UDF
Components 10. Future work &

4. Client-Server Alternative
Architecture 11. References

5. Installation

6. Hive Basics
(DDL,DML,QL)

7. Acid Transaction

What is Hive

» Data warehouse of Hadoop ecosystem
» Developed by Facebook

» Initially created to build an abstraction over
MapReduce for SQL developer

» Used for structured data & require schema

» Access file store in HDFS , HBase and in other
data storage systems (e.g. AWS S3)

» Hive is not designed for online transaction
processing

Hive Features

» Hive is Schema on Write

» Only open source Hadoop SQL with
transactions i.e. Insert/Update/Delete/Merge

» Hive is best used for traditional data
warehousing tasks and is not designed for
online transaction processing

» Hive is designed to maximize scalability,
performance, extensibility, fault-tolerance

and loose-coupling with its input formats

OLAP, OLTP & hive

» Online Analytical Process: Supports hundreds to
thousand of transaction per-second. More of a
querying system. Tables not normalized examples
are Hive, Cassandra. Slow changing tables.

» Online Transactional Process: Supports millions &
billions of transactions per second. More of database
modifying system. Tables normalized, example
Oracle MySQL. Requires high integrity. Fast changing
tables.

Hive is OLAP

CAP & Hive

CAP theorem says, A distributed database system can only have
2 of the below 3 properties:

1. Consistency : All nodes see the same data at the same time. read
operation will return the value of the most recent write. entire
transaction gets rolled back if there is an error during any stage
in the process.

2. Availability : Every request gets a response on success/failure.
the system remains operational 100% of the time.

3. Partition Tolerance : A system that is partition-tolerant can
sustain any amount of network failure that doesn’t result in a
failure of the entire network. Data records are sufficiently
replicated across combinations of nodes and networks to keep the
system up through intermittent outages.

A data warehouse can be either CA or CP or AP . OLAP are
generally AP and Hive is also an AP data warehouse.

Hive Evolution

» 2008 - Facebook open sources hive

» 2010 - Apache Hive initial version
released

» 2015 - Hive 1.x.y release
» 2016 - Hive 2.x.y release
» 2018 - Hive 3.x.y release

Hive Versions

Version 0.X:
» Provided view instead of file view (In HDFS)
» Translated SQL to MapReduce
» Mostly ETL, Big batches, High Startup time

Hive 1.X
» Stable
» Backwards compatible

» Bug fixes

Version-2

» Tez and Spark execution engines option.

» HBase can store Hive Metadata i.e. HBase Meta-store provide
scaling support but lacks transaction addressing via Apache
omid hence removed in hive- 3.0

» ACID transaction support.

» HPLSQL : an open source tool implements procedural SQL
language for Apache Hive, Spark-SQL, Impala as well as any
other SQL-on-Hadoop implementations, NoSQL and RDBMS.
http://www.hplsgl.org/why

Live Long And Process (LLAP)
Cost based Optimization

Hadoop 2+, javaé+ supported

vV vvy

Does not require Hive server 2, can run H52 embedded in
Beeline

Version-3

Optimized for S3/WASB/GCP
Support for JDBC/Kafka/Druid
Apache Tez replaces MapReduce as the default Hive execution engine

MapReduce engine is deprecated
In ACID side,

v ACID Storage has been removed

vV v v.v Vv

v Added MERGE support (CDC can regularly merged into fact table with upsert functionality)

v Removed restrictions so tables no longer be bucketed

v Non ORC based table supported (Insert and Select only)
» In SQL side,

v Materialized view

v LLAP workload management

v Query result caching

v Hive on Kubernetes

Hive (Version-3) Flow

» Hive compiles the query
» Tez executes the query

» YARN allocates resources
for applications across the

cluster and enables @
authorization for Hive s soptcaton | 1o
jobs in YARN queues BT
Execution Engines LLAP
» Hive updates the data in Fesource Manager | YARN
HDFS or the Hive

. Distributed File System HDF§ (d&aum/
warehouse, depending on
the table type

» Hive returns query results
over a JDBC connection

Hive Architecture

. Hadoop
Execution :‘*‘
4—{ Driver/Compiler f/' Engine -

B

ualo aNH

Hive Components

1. Ul: Interface to submit queries, supports both command line interface and
web based GUI

2. Driver: Component which receives the queries

3. Compiler: Component that parses the query, does semantic analysis on

different query blocks and query expressions. Generates an execution plan
with the help of the table and partition metadata looked up from the
metastore

4, Execution Engine: Component which executes the execution plan created
by the compiler. The plan is a DAG of stages. The execution engine manages
the dependencies between these different stages of the plan and executes
these stages on the appropriate system components

5. Metastore: Component that stores all the structure information of the
various tables and partitions in the warehouse including column and
column type information, the serializers and deserializers necessary to
read anccii write data and the corresponding HDFS files where the data
is store

Meta-Store

= Central repository of Hive
metadata

= Default hive uses derby metadata
and embedded JVM allows only
single session at a time

. Standalone meta-store :
metastore service still runs in the
same process as the Hive service,
but connects to a database
running in a separate process

= Remote meta-store :one or more
meta-store servers run in separate
processes to the Hive service,
better manageability and security
because the database tier can be
completely firewalled off, and
clients no longer need the
database credentials

Embedded

Local
metastore

Remote
metastore

Driver |-—p| Met

Driver || Metastore |...

»
MysQL
v

Execution Engine

» MapReduce : MapReduce is a purely batch framework.
Queries using it may experience higher latencies (tens of
seconds), even over small datasets.

» Apache Tez : Apache Tez is designed for interactive query,
and has substantially reduced overheads versus MapReduce.

» Apache Spark :Apache Spark is a cluster computing
framework that's built outside of MapReduce, but on top of
HDFS, with a notion of composable and transformable
distributed collection of items called Resilient Distributed
Dataset (RDD) which allows processing and analysis without
traditional intermediate stages that MapReduce introduces.

Note : Users are free to switch back and forth between these frameworks at any
time

Execution Engine

» Tez and Spark can avoid replication overhead by
writing the intermediate output to local disk, or
even store it in memory (at the request of the
Hive planner).

» The execution engine is controlled by the
“hive.execution.engine property.

» Set Hive to use Tez as follows:

hive> SET hive.execution.engine=tez;

Hive Control Flow

Figure 1
HIVE
—
8: sendResults el
EXECUTION
ENGINE
6: executePlan
)
i Query,
ut DRIVER 613D Es0ps
7: fetchResults for DDLs
N 2: getPlan 5: sendPlan
3: getMetaData
COMJILER METASTORE
4: sendMetaData

63d

Ifs oper}

ations

HADOOP
~
6.1: executeJob MAP/REDUCE
6.2: jobDone JOB TRACKER
TASK TRACKERS TASK TRACKERS
(MAP) (REDUCE)

REDUCE
OPERATOR
TREE

SERDE
SERIALIZE

NAME NODE

DATA NODES

Hive Client-Service
Architecture

Hive clients
Thift |
application
e |
application |
ODM TETY
application

K

Hive services

w

Metastore

Hive Web
Interface

Y >
«
aaepp| FileSystem e
bl .
.”. ..".
& 4

JobClient

Hive Storage
and Compute

Metastore
database

Hadoop
cluster

Hive Services

CLI: Command-line interface to Hive (the shell This is the default
service)

Hiveserver2 : Improves original Hive server by supporting
authentication and multi-user concurrency. Applications using the Thrift,
JDBC, and ODBC connectors need to run a Hive server to communicate
with Hive.

Beeline: Command-line interface to Hive that works in embedded
mode(shell) or by connecting to a Hive server 2 process using JDBC

Jar : The Hive equivalent of Hadoop jar

Metastore: By default, the metastore is run in the same process as the
Hive service. Using this service, it is possible to run the metastore as a
standalone (remote) process

HWI: Hive web interface. Component removed after hive 2.2.0

Hive Clients

If Hive is run as a server (hive --service hiveserverl),
there are a number of different mechanisms for
connecting to it from applications, primary are:

v Thrift Client : for accessing hive via Python and
Ruby applications

v JDBC Driver: for accessing hive via java (beeline)

v ODBC Driver: for accessing via various business
applications that support ODBC protocol

Hive Installation Steps

1. Download a stable hive release

2. Set Environment variable

3. Create temp and warehouse directory in
HDFS

4. Set properties of hive-env.sh file

Refer: https://github.com/kaustuvkunal/Hive-Tutorial/blob/master/Hive-Installation.md

Setup MySQL as Hive
Metastore

Default hive metastore is derby which has only single
session support hence for most practical purpose MySQL
metastore is used.

1. Create metastore database in MySql

2. Put mysql-connector-java-(mysql-version).jar into
HIVE_HOME/lib/

3. Create the Initial database schema
4. Create MySql user account for hive user

5. Configure hive-default .xml

Refer: https://github.com/kaustuvkunal/Hive-Tutorial/blob/master/mysqgl-metastore-
setup.md

Upgrading Hive Version

» Upgrade the Meta-Store schema by running the
appropriate schema upgrade scripts located in the
scripts/metastore/upgrade directory.

» Upgrade scripts for MySQL, Postgre-SQL, Oracle,
Microsoft SQL Server, and Derby databases. If using a
different database for your Metastore you will need to

provide your own upgrade script.

Hive Tables

» Managed Tables : Reside inside hive warehouse
data. Hive manages it. If deleted, data and
metadata both gets deleted. When you load data
into a managed table, it is moved into Hive’s
warehouse directory.

» External Tables : Reside outside hive warehouse
directory . Delete command only deletes meta data
from metastore.

Refer : https://github.com/kaustuvkunal /Hive-
Tutorial/blob/master/hive-commnads.md

Partitioning

» Partitioning is optimization & storage technique in Hive.

» It store table data by a column values.

» If we partitioned by date column, then records for the same date
would be stored in the same partition(hdfs-folder) and queries on
that particular partition column will run much efficiently.

» Partitions are defined at table creation time using the PARTITIONED
BY clause.

» Table may be partitioned in multiple dimensions (sub partitioning).

» When we load data into a partitioned table, the partition values
are specified explicitly.

» However, partitions may be added to or removed from a table after
creation, using an ALTER TABLE statement.

» SHOW PARTITIONS parttiion_tablename’ command depicts
partitions in a table.

Partitioning Types

» Static Partitioning : Specify the partition column value
explicitly in each load statement. Example LOAD DATA
INPATH '/hdfs path of the file' INTO TABLE t1
PARTITION(country="US”)

» Dynamic Partitioning : Allow us not to specify partition
column value each time. Example ‘INSERT INTO TABLE
t2 PARTITION(country) SELECT * from T1;

Bucketing

Bucketing imposes sampling of tables
CLUSTERED BY (id) INTO 4 BUCKETS; (for random sampling)

CLUSTERED BY (id) SORTED BY (id ASC) INTO 4 BUCKETS; (
sorted and useful in joining)

» Two tables that are bucketed on the same columns which
include the join columns can be efficiently implemented as a
map-side join

» Bucketed tables allow more efficient sampling than non-
bucketed tables and may later allow for time saving operations
such as map-side joins. However, the bucketing specified at
table creation is not enforced

Views

Views are virtual table

May also be used to restrict user’s access to particular
subsets of tables

» When we create a view, the query is not run; it is simply
stored in the metastore called not materialized to disk.

So every time you called view its created by a mr job.

To store views in disc use create table as command

Hive DDL

Create (Database, Schema, Table, View, Function, Index)
Drop (Database, Schema, Table, View, Index)

Truncate (Table)

Alter(Database, Schema, Table, View)

Msck (Repair Table [add/drop/sync partitions])

Show (Database, Schema, Table, TBLPROPERTIES, Views, Partitions,
Functions, Index, columns, create table)

Show (Database, Schema, Table, TBLPROPERTIES, Views, Partitions,
Functions, Index, columns, create table)

vV v v v.VvVYy

v

Describe (Database, Schema, Table, View,)
» Locks (table, partition)

Hive DML

» Loading files into tables
» Inserting data into Hive Tables from queries
» Writing data into the file system from queries

» Inserting values into tables from SQL

Refer : https://github.com/kaustuvkunal/Hive-Tutorial/blob/master/hive-
commnads.md

Hive Data Types

Gategory Type Desaiption Literal examples
Frimitive BOOLEAN Troe/false value TRUE
TINYINT 1-byte (8-bit) signed integet, from -123 to 127 b 4
SMALLINT 2-byte (16-bit) signed integef, flom -32768 to 32767 1S
INT 4-byte (32-bit) signed integer, flom -2,147 433 6430 1
2,147 483 647
BIGINT 8-byte {64-bit) signed integet, flom i
-9,223 372 036 854,775 308 to
9,223 372,035 854,775 307
FLOAT 4-byte (32-bit) single-pfeasion floating-point numbsf 1.0
DOUBLE 8-byte (64-bit) double-precision floating-point 1.e
numbes
DECIMNAL Abstfary-predsion signed decimal numbef 1.6
STRING Unbounded variable-length chalacter string e
VARCHAR Variable-length chafactef stfing \a/, “ap
CHAR Fixed-length charactef stfing el
BINARY Byte amay Not suppofted
TIMESTAMP Timestamp with nanosecond pfecision 1325582245660, "2012-81-82
63:84:85.123456789"
DATE Date ‘2012-01-02"
Complex ARRAY An ofdered collection of fields. The ficlds messt all beof array(i, 2)°?
the same type.
Mmap An wnordefed collection of key-value paifs. Keysmust map(*a‘, 1, 'b', 2)

be primitives; values may be any type. Fof a particular
map, the keys must be the same type, and the values

must be the same type.
STRUCT A collection of named fizlds. The fields may be of struct('a', 1, 1.8)°
diffefent types. named_struct(‘col1', "a‘,
"Col2%, -3 3"5 . 2 0)
UNION A walue that may be one of a numbef of defined data create_unton(1, "a‘, 63)

types. The valee is tagged with an integef
Teplesenting its data type in the umson (by 0-index).

Sorting Options in Hive-QL

ORDER BY : Guarantees global ordering, but does this by pushing all
data through just one reducer. This is basically unacceptable for large
datasets. You end up one sorted file as output.

SORT BY : Orders data at each of N reducers, but each reducer can

receive overlapping ranges of data. You end up with N or more sorted
files with overlapping ranges.

DISTRIBUTE BY : Ensures each of N reducers gets non-overlapping
ranges of x, but doesn't sort the output of each reducer. You end up
with N or unsorted files with non-overlapping ranges.

CLUSTER BY x: Ensures each of N reducers gets non-overlapping

ranges, then sorts by those ranges at the reducers. This gives you
global ordering, and is the same as doing (DISTRIBUTE BY x and SORT BY
x). You end up with N or more sorted files with non-overlapping ranges.

Group By: Groups the data by select column-id and use to perform
operations like sum, avg.

Property Precedence
Hierarchy

1. The Hive SET command
2. The command-line -hiveconf option

3. hive-site.xml and the Hadoop site files (core-
site.xml, hdfs-site.xml, mapredsite.xml, and

yarn-site.xml)

4. The Hive defaults and the Hadoop default files
(core-default.xml, hdfs-default.xml,mapred-
default.xml, and yarn-default.xml)

Hcatalog & WebHCat

» HCatalog is a table storage management tool for
Hadoop. It exposes the tabular data of Hive
metastore to other Hadoop applications. It enables
users with different data processing tools (Pig,
MapReduce) to easily write data onto a grid. It
ensures that users don’t have to worry about where

or in what format their data is stored.

» WebHCat is the REST API for Hcatalog . It provides a
service that you can use to run Hadoop MapReduce
(or YARN), Pig, Hive jobs or perform Hive metadata
operations using an HTTP (REST style) interface.

Joins

» Inner joins
» QOuter joins (left outer join and right outer join)
» Semi joins

» Map joins

Refer : https://github.com/kaustuvkunal/Hive-Tutorial/blob/master/hive-commnads.md

Map -Join

For join Query optimization
Let small table load into memory for faster execution

» Can be done explicitly by mentioning
/*MAPJOIN(table_name)*/ or set properties in
configuration files to automatically does that

Semi join

» Selecting of table part which is not in other table

ACID

1. Atomic :Each transaction is treated as a single unit either 0 or 1.

2. Consistency: Ensures that a transaction can only bring the
database from one valid state to another. This prevents database
corruption by an illegal transaction, but does not guarantee that a
transaction is correct. Once an application performs an operation
the results of that operation are visible to it in every subsequent
operation)

3. Isolate :Concurrent execution of transactions leaves the database
in the same state that would have been obtained if the
transactions were executed sequentially. An incomplete operation
by one user does not cause unexpected side effects for other users.

4. Durable :Once a transaction has been committed, it will remain
committed even in the case of a system failure.

With Addition of transactions in Hive 0.13 it is now possible to provide
full ACID semantics at the row level.

Why Transactions Added in
Hive?

» Overcome Dirty reads : System see data written

after they had started their queries

» Inserts and update requirement of individual

records due to dimension/Schema change

» Delete requirement (INSERT, UPDATE,
and DELETE.)

» Bulk update (SQL Merge)

Enabling ACID Support

Add transactional properties in hive-site

v hive.support.concurrency - true
v hive.enforce.bucketing - true (Not required as of Hive 2.0)
v hive.exec.dynamic.partition.mode - nonstrict

v hive.txn.manager -
org.apache.hadoop.hive.ql.lockmgr.DbTxnManager

v hive.compactor.initiator.on - true (for exactly one instance
of the Thrift metastore service)

v hive.compactor.worker.threads - a positive number on at
least one instance of the Thrift metastore service

Hive Transaction Support

Supports for :
v Insert
v Delete
v Update

v Merge

Refer: https://github.com/kaustuvkunal/Hive-Tutorial/blob/master/Hive-
Installation.md

Transactions basics

How transaction works when HDFS does not supports file
update ?

» Data for the table or partition is stored in a set of base files.

» New records, updates, and deletes are stored in delta files.

» Anew set of delta files is created for each transaction (or in the case of
streaming agents such as Flume or Storm, each batch of transactions)
that alters a table or partition.

» At read time the reader merges the base and delta files, applying any
updates and deletes as it reads.

» Any partitions (or tables) written with an ACID aware writer will have a
directory for the base files and a directory for each set of delta files.

Compactor

Set of background processes running inside the
Metastore to support ACID system, major process are:

» Initiator : Discovering which tables or partitions are
due for compaction.

» Worker: Each Worker handles a single compaction
task. A compaction is a MapReduce job.

» Cleaner : Process that deletes delta files after
compaction.

» AcidHouseKeeperService : Aborts timeout
transaction and release resource.

Delta File Compaction

» As operations modify the table more and more delta files are
created and need to be compacted to maintain adequate
performance. There are two types of compactions, minor and
major

v Minor compaction takes a set of existing delta files and rewrites them
to a single delta file per bucket.

v Major compaction takes one or more delta files and the base file for the
bucket and rewrites them into a new base file per bucket. Major
compaction is more expensive but is more effective

» After a compaction the system waits until all readers of the old
files have finished and then removes the old files

» SHOW COMPACTIONS : displays information about currently running
compaction and recent history

Transaction Limitations

» BEGIN, COMMIT, and ROLLBACK not supported yet

» Only ORC file format is supported but anything
implementing format

» Tables must be bucketed to make use of these features
» External tables cannot be made ACID tables

» Reading/writing to an ACID table from a non-ACID
session is not allowed the

» LOAD DATA... statement is not supported with
transactional tables

Future work on Transaction

Support for BEGIN/COMMIT/ROLL BACK
Smarter compaction
User defined primary keys

Better monitoring/alert

vV v v Vv Vv

Finer grained Concurrency management/conflict
detection

Storage

» Row Format

» Row format is defined by a SerDe, a portmanteau word for a
Serializer-Deserializer

» Default row delimiter is Control-A character.
» Default collection item delimiter is a Control-B character

» The default map key delimiter is a Control-C character

» File Format

» Default file format is A plain-text file, but there are row-oriented
and column-oriented binary formats available too.

» There is no means for escaping delimiter characters in Hive, so it is
important to choose ones that don’t occur in data fields

Other Storage Formats

» ORC Files

» Sequence Files
» RC Files

» Parquet files
>

Avro-data files

ORC

Default File format supported by Hive Transactions

Optimized Row Columnar (ORC)

Designed to store hive efficiently and to perform read ,
write faster

» ORC Advantages :

v Asingle file as the output of each task hence reduces the Name
node’s load

v Light-weight indexes stored within the file
v Block-mode compression based on data type

v Concurrent reads of the same file using separate Recordreaders

Sequence Files

» Hadoop flat files, stores values in binary key-value
pairs

» Easily splitable and mergeable

RC Files

» Record Columnar File

» Binary format: Flat file consisting of binary
key/value pairs

» Columnar storage : Partitions rows horizontally
into row splits, and then it vertically partitions

each row split in a columnar way

» Ensure data in the same row are located in the
same node

Parquet Files

» A compressed, efficient columnar data
representation

» Supports very efficient encoding schemes, fast
processing and is splitable.

» Parquet file consists of a header followed by one
or more blocks, and terminated by a footer

» all the file metadata is stored in the footer

Avro File

Avro is serialization format , it provides,

v Rich data structures

v A compact, fast, binary data format

v A container file, to store persistent data

v Remote procedure call

v Simple integration with dynamic languages

v Schema at top of file

Hive Indexes

Hive supported below two types of indexes

1. Compact : Compact indexes store the HDFS block numbers
of each value, rather than each file offset, so they don’t
take up much disk space but are still effective for the
case where values are clustered together in nearby rows.

1. Bitmap :Bitmap indexes use compressed bit sets to
efficiently store the rows that a particular value appears
in, and they are usually appropriate for low-cardinality
columns (such as gender or country).Bitmap index
stores(value, list of row as bitmap) while compact Index
stores (value, block-id)

Why Indexes are not
Recommended in Hive ?

» ORC has build in Indexes which allow the format to skip
blocks of data during read, they also support Bloom
filters.

» Indexing Is Removed since 3.0
» Alternative to indexing is materialized view.

» Using columnar file formats (Parquet, ORC) - they can
do selective scanning; they may even skip entire
files/blocks.

» Indexes unsupported for Tez execution engine

Hive logging

» logging configuration is in conf/hive-
log4j.properties and you can edit this

file to customize logging

UDF(User Defined Function)

Allow user to extend Hive-QL

Implemented in java, acted like a built in function(include
online help)

Extend UDF, write one or more evaluate method with a
Hadoop writable return type.

Hive's SQL can also be extended with user code via user
defined functions (UDFs), user defined aggregates (UDAFs), and
user defined table functions (UDTFs).

UDF Types
v UDF : Input single row and output single row
v UDAF : For multiple input rows creates a single output row

v UDTF : Operates on a single row and produces multiple rows

Hive Alternatives

» Presto from Facebook
» Apache Drill
» Spark SQL

» Impala from Cloudera

Reference

» Facebook hive paper

» https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/hive-

overview/content/hive-apache-hive-3-architecturural-overview.html

» The Definitive guide 4th edition (chapter 17)

» http://hive.apache.org

