MapReduce

Kaustuv Kunal

Outline

. MapReduce Introduction 12. Setup & Cleanup Methods

2. MapReduce Flow 13. Side Data Distribution (Distributed Cache)
3. Shuffle-Sort-Merge 14. Sorting Large Datasets

4, Word-Count Program 15. Input Sampler

5. Execution Modes 16. Total-Order-Partitioner

6. Partitioner 17. Map-Side & Reduce-Side Joins

7. Combiner 18. Compression

8. Writables 19. Speculative Execution

9. Counters 20. MR Unit

10. Input Format 21. Use Cases

11. Output Format

MapReduce Intro

v’ A functional programming model developed by Google
v Processes data in parallel
v" Works on Divide & Conquer principle

v' Instead of taking data to code, takes code to data

v Processing framework of Hadoop

MapReduce Basics

v" MapReduce divides data into Input splits before processing*

v' Input split is processed in two sequential phases, first Map and then
Reduce

v Input & output of each phases is key, value pairs

v' Map method takes a key, value pair and generates intermediate key,
value pair Map : (k1,01) -> k2,02

v" Reducer method takes Intermediate key and all the values associated with

this key as list and outputs key,value pair Reduce(k1, <vl, 02,...,on>) ->
k2,02

v Reducer starts only when all mapper finish execution

*In HDFS, size of input split is ideally equals to block size

MapReduce Flow

v' Before reducer, output of all

mappers are merged and sorted
key wise

v' No particular ordering on key’s
value list

Distribute
File System

‘M KeyValue
i AKeyValue
¢ | KeyValue

Key/Value
Key/Value

™ Key/Value

i Reduce

Node

¢ Key/Value

Reduce| w[Key/Value |

Distributed
File System

Wa‘ 1
34 P
e S -
" - 0

-.cr -

..“

-

= d e - - - -

' '..N‘v“.'ﬁ Neo' B P oS rbw s »
ot~ > o ~ vl -

- B] -
v . ’ L LY -

Splitting Mapping Shuffling Reducing Final result

Bear, 1 Bear, 2 |
Bear, 1

Deer Bear River |

Car, 1

\ X7 Cari
Deer Bear River | ol
Car Car River VARV

Deer Car Bear

Deer Car Bear |

3= import java.io.IOException;
4 import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.lLongWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class WCMapper extends Mapper<LongWritable, Text, Text, IntWritable>
{

= new IntWritable(l);
= new Text();

throws IOException, InterruptedException

{

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens())

{
word.set(itr.nextToken());

context.write(word, one);

N NN NN
W N

N N
~N o w; B

™~

4
’rea -
- - - - .=y
b, PR+ - oD sradd
- i, LA ‘. 4 - *
w9 rove P el " o rhvw o Vo .5 0d
¥} - ~Nisky . g " o . > . "~ ok . . g
- . b . - v - .
daw oo - « P e A . : : D rg i . s # o
. DL A B) .t v - P s o ,on aar . ' < i P . -) ’ b o . <
: ¢ g F oo ;m\ o v ” "-‘ B o ssritase B s nRA > e -~ i f 7 \‘. AR i &k 5 S P S o
WER R N AT SR R e .1- r' Mw &b oNNF R ,‘a"t 14 - PP s - N8 i & Fe W N S -~ l PoSe & ’ﬂa»! Sk B S ‘!u |) 'tax'.- ¥ N \ X
o Ve e e Y A (R 2L N Y - AT Y 'L‘;“.-- N 7 Gl N B (" » v 4. ¥ 21 o 55 r Vb FoRe A ey % -d
- 390 W 5. % | B Mo W NN\ Af‘ . ’ = 6. N7 o | . B B o " - s rp'\. - » ‘I p L& | J L) r ‘\\/ r ' ‘yy - U o R Lo N Y ‘ ny
NS Wl PN I 'S X ~,/ ‘ [@ - 8 A P ,,} 4 ’ e N ey . 4 - LB P W ’ 2 -4 'R % T » L R G N ALY & A A
- ™ + . '3 i : ’ - - I e L - . . - o = y e - b =
e . \ ’ - y S
- . . » = -

= import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

9 public class WCReducer extends Reducer<Text, IntWritable, Text, IntWritable>

10 {

11 private IntWritable result = new IntWritable();

12

13€ public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException

int sum = 0;
for (IntWritable val : values)
{

}

result.set(sum);
context.write(key, result);

sum += val.get(Q);

- import
import
import
import
import
import
import

org
org
org
org
org
org
org

.apache.
.apache.
.apache.
.apache.
.apache.
.apache.
.apache.

hadoop.
hadoop.
hadoop.
hadoop.
hadoop.
hadoop.
hadoop.

public class WCDriver

{

-Q-ml

q'm WA~
.4-40-0': .- PAS L
'.— D' y > - s ae

conf.Configuration;

fs.Path;

10.IntWritable;

i0.Text;

mapreduce.Job;
mapreduce.lib.input.FilelnputFormat;
mapreduce. lib.output.FileOQutputFormat;

public static void main(String[] args) throws Exception

{

Configuration conf = new Configuration();
job = Job.getInstance(conf, "word count");

Job

job.
job.
job.
job.
job.
job.
job.

setJarByClass(WCDriver.class);
setMapper(lass(W(Mapper.class);
setCombiner(lass(WCReducer.class);
setReducerClass(WCReducer.class);
setNumReduceTasks(1);
setOutputKeyClass(Text.class);
setOutputValueClass(IntWritable.class);

Path inputPath = new Path(args[0]);
Path outputPath = new Path(args[1]);

FileInputFormat.addInputPath(job, inputPath);
FileOutputFormat. setOutputPath(job, outputPath);
System.exit(job.waitForCompletion(true) ? @ : 1);

MapReduce Execution Modes

v Local mode : Execute in an IDE locally using hadoop library and single
JVM

v Psudo distribution mode : All hadoop daemons are in same machine,
daemons use separate JVM

v' Distribution mode: Daemons run on different machines and separate
JVM

Partitioner

v’ Partitioner class partitions the keys
of intermediate Map output

v' Ensure identical keys go to same
reducer

v' Total number of partitions equal to
number of Reducer

v' Default partition is hash function

Partitioner Data Flow

!

map map map

| !
N o |] BN oo |Bae] BN os)N o)
partitioner partitioner partitioner

=) _J7

#

MapReduce Shuffle and Sori/
J/

DEE e 0 S en

reduce reduce

To implement custom
partitioner,

v Extend partitioner class and
implement its getPartion() method

v’ Specity custom partitioner class
inside driver class

https:/ / github.com/kaustuvkunal / Big-

reduce/src/main/java/com/kKk/mapre
duce/partitioner

3= import org.apache.hadoop.io.Text;
4 import org.apache.hadoop.mapreduce.Partitioner;

6 bublic class MyCustomPartitioner extends Partitioner<Text, Text>
7 A

public int getPartition(Text key, Text value, int numReduceTasks)

if (numReduceTasks == @)
return 0;

if (key.equals(new Text("Male")))
return 0;

if (key.equals(new Text("Female")))
return 1;

return numReduceTasks;

Combiner

v Combiner is Reducer for a single
Map task

v It optimises processing by
minimising the amount of data
being flown from one node to
another.

v’ It's input and output key & value
type should be same

v Ideally used if reducer operation is
commutative& associative

v’ Specify combiner inside driver as
job.setCombinerClass

Writables

v' In distributed systems, data spend lots of time doing inter node transfer
hence undergoes frequent serialisation & de-serialisation

Standard java data type are not suitable for this
To overcome, hadoop defines their own datatype known as writable

WritableCompareble is a writable which is also comparable

NN NN

All MapReduce keys are instance of WritableComparable and all values
are instance of Writable.

N

Examples : [ntWritable, FloatWWritable, T'ext etc

v' User can write their own writable
type by implementing writable
interface*

v' Writable interface defines two
methods write & readFields

v WritableComparable interface is a
sub interface of the Writable and
java.lang.Comparable interfaces.

https:/ / github.com /kKaustuvkunal /Big-
Data/tree /master/map-

reduce/src/main/java/com/Kk/mapreduce

interface writable

void readFields(DataInput in);
void write(DataOutput out);

interface WritableComparable

void readFields(DatalInput in);
void write(DataOutput out);
int compareTo(WritableComparable 0bj);

Counters

v' Counter are facility for Counters: 17
: : Map-Reduce Framework
MapReduce applications to report Spilled Records-248
1ts statistics Map output materialized bytes-=1489
Reduce input records-=124
Map input records—?ﬂ
4 | ¢ { SPLIT_RAW_BYTES=92
v’ It is useful in problem diagnosis Map outiput MRed i bE
and Validation Reduce shuffle bytes-0

Reduce input groups-=124
Combine output records-=124

£ X ' Reduce output records-=124
v' Counter can be either built-in or Map oulpai TSI

; Combine input records=167
Lser deﬁned Total committed heap usage (bytes)=321912832

File Input Format Counters
Bytes Read-1093

v’ Figure shows some default built-
in counters which mapreduce
produces after execution

Implement custom counter in below
three steps,

//Declare Counter

1. Defined custom counter as java i O e T
MALE_COUNT,
enum type FEMALE_COUNT};
//Process Counter
2. Process(increment/decrement) if(sex.contains("MALE")){ .
. - context.getCounter(GENDER_COUNTER.MALE_COUNT).increment(1);
counter inside mapper or reduce. b [QF-N7xY
if(sex.contains ("FEMALE")){

context.getCounter(GENDER_COUNTER.FEMALE_COUNT).increment(1);
}

3. Print counter

//Print Counter

Counter cn=job.getCounters();

Counter cl=cn.findCounter(GENDER_COUNTER.MALE_COUNT);
System.out.printin(cl.getDisplayName()+":"+cl.getValue());
Counter c2=cn.findCounter(GENDER_COUNTER.FEMALE_COUNT);
System.out.println(c2.getDisplayName()+":"+c2.getValue());

Input Format

v' Input format class converts input into key value pairs

v Some often used Input format are TextInputFormat,
KeyValuelnputtormat, SequenceFileInputFormat

It defines two methods

v’ getSplits() to split the input into records

v' RecordReader() to read record as key, value pair

oL L 4
& OV Pee
-

Combinefile
Inputformat<K, V>

TextinputFormat

meh?m:m% FilelnputFormat<K, V> Seg = KeyValueTextInputFormat

NLinelnputfomat

SequenceFile SequenceFileAsBinar
InputFormat<K, V> S Inputformat ’

SeqluenceFileAsText
nputformat

édme'fsaaclfl); CompositelnputFormat Sequencefile

InputoF:)'Fr’noatd(, V> <K,V> Inputkilter<K,V>

DBInputrormat<T>

v Output format class writes MapReduce output into a particular
format

TextOutputFormat<K, V>

OutputFormat<K, V> FileQutputFormat uenceFleAsBma
“gﬂpuzk'mnm ShN S eFil
equenceFile

OutputFormat<K, V>

NullOutputFormat
<K.\V>

DBOutputFormat<K,V>

FilterOutputFormat

<KV> LazyOutputFormat<K, V>

Node 1

F o louded from locad HDFS storas

Ingrat!h Ormet

__________________________________-’1'

ﬁ

——

RecordReaders

Fosl (k. v)pain

Wiltebrachk to

ocu HDES O pans-orme

"Shuthing” peooess

——— —
e ——

-— -
ntermediate (k, v)
PaYrs escchar sy

by o NOCdos

Node 2

Flas loaded von local HDFES oo

l Ioput (K, v) perirs

e

-
o
p

N 7 Inwermedate (K, v) palrs

S -

Farstioner

Fins (k. v) sl

Writeheck o

QunutFormat Gcal MODFES

Setup & Cleanup Methods

v Each Mapper and reducer contains a setup and a cleanup method
v' Mapper’s setup method runs before map method is called for first time
v" Reducer’s setup method runs before reduce method is called for first time

v’ Setup method is useful in initializing data structure, reading data from
external file, setting parameters etc.

v' Mapper’s clean up method is called after processing of all records by
mapper but before termination of mapper

v' Similarly Reducer’s cleanup is called after processing of all records by
reducer but before termination of reducer

Gide Data Distribution

v Read only data needed by a job in order to process main data is known as
side data

v" MapReduce job accesses side data by below two ways,

1. Job Configuration : It serializes the data, put all the data inside memory
and accessed using context’s get configuration method. Use it when side

data size is in under few kilobytes

2. Distributed cache : Distributed cache provide service to copy side data
to the task node. Files are copied to node one per job. File path is specified
in driver class as : Job.addCacheArchive(URI) , use for larger side data

MapReduce & Sorting

v" Remember, keys are passed to reducer in sorted order

v Due to this feature, MapReduce is idle for sorting large data sets

v' Sorting can effectively test hadop systems I/O as well

How to Sort Large Datasets ?

v Optionl: Use single reducer
Inefficient for large files
Too much load on one node

v' Option2: Partition key space based on insertion order using custom
partitioner (e.g. 1-25, 25-50, 50-75, 75-100)

Data might be partition uneven
Uneven load on nodes

v' Option3: Sample key space to approximate on key distribution then
partition the key space

Hadoop comes with auto Samplers & TotalOrderPartioner

Input Sampler

v Samples keys across all input splits and sorts them using the job’s Sort-
Comparator

v' It writes a “partition file” a sequence file* in HDFS to delimit the different
partition boundaries based on the sorted samples. For example, if number
of reducer is 3 the partition file will have 2 boundary entries

v' Partition file is shared with the tasks running on the cluster as side data

v Each map output is sorted & partitioned based on these boundaries

Sequence file is a flat file consist of binary key/value pairs

Input Sampler Types

v/ Random sampler: samples randomly based on a given frequency
Random Sampler(freq, numSamples, maxSplitsSampled)

v/ Interval Sampler: samples at every fixed interval
IntervalSampler(freq, maxSplitsSampled)

v_ Split Sampler: takes the first n samples from each split
SplitSampler(numSamples, maxSplitsSampled)

Here,
e Freq, is probability that key will be picked from input
e numSamples, is the number of samples extracted from input and

e maxSplitsSample, is maximum number of input splits that will be read to extract the samples

TotalOrderPartitioner

v' TotalOrderPartitioner class is packed with Hadoop distribution

v Key objective of TotalOrderPartitioner class is to partition key space based
on partition file ranges

https:/ /github.com /Kaustuvkunal /Big-Data/tree /master/map-
reduce/src/main/java/com/kk/mapreduce/totalordersort

Secondary Sort

What if our use case require us to sort values also ?
v Optionl : Sort values inside reducer, faster but memory inefficient

v' Option 2 : Define new key as combination of key &value, perform sorting
& grouping of new key in specific order as per business requirement

https:/ / github.com/kaustuvkunal/Big-Data / tree /master/map-
reduce/src/main/java/com/kk/mapreduce/secondarysort

Map-5ide & Reduce-Side Joins

v' MapReduce can be use to join two dataset

v" When the join operation is performed in map phase it is Map-Side join
and when it is performed in reduce phase it is Reduce-Side join.

v' Map-Side join is faster as data is not going through sort and shuffle phase
but requires precondition like data should be pre sorted & equally

partitioned. It is ideal for small tables or when one table is side data

v" Reduce-Side join is ideal for joining two large size tables

Compression

v Compression reduces space and
speedup execution

(ompression format ~ Tool
DEFLATE: N/A

gzip gzp

bzip? bzip?
120 [z0p

24

v Facilities are available to compress
intermediate Map output and final
Reducer output

v Hadoop comes with many o

compression codec classes

v Compression codec classes are
available for Gzip, BBZIP2, LLZO
,LZ4, Snappy type compression

https:/ / github.com/kaustuvkunal/Big-
Data/tree/master/map-
reduce/src/main/java/com/kk/mapre
duce/maxtemp

Algorithm
DEFLATE
DEFLATE

bzip?
L0
L4

Filename extension
deflate

844

Snappy

Splittable?
No
No

Speculative Execution

v" Remember, reducer task wait until all mapper finish execution
v Failed or slow mapper node delays the whole MapReduce job

v’ Speculative excution, a job level property, if set then job ensures that after
certain time, task start executing at different node on same data set

v" The task which completes first is taken and another one is discarded

(killed)

v' Speculative excution can be set for both mapper and reducer task

/ey

1/ g V4
conf.set(“mapreduce.map.speculative”, “true”);

1/ 9 77 4/ 77
conf.set(“mapreduce.reduce.speculative”, “true”)

v" An MR job output can be input to
another MR job

public class ChainJob

{

public static void main(String[] args) throws Exception

{

Configuration conf = new Configuration();
Job jobl = Job.getInstance(conf," Jobl ");

int code = jobl.waitForCompletion(true) ? 1 : 0;
if (code == 1)
{

Job job2 = Job.getInstance(conf,
" J0b2u) ;

System.exit(job2.waitForCompletion(true) ? @ :

2);

v’ Apache MRUnit is a Java library that helps developers unit test Apache
Hadoop map reduce jobs

https:/ /github.com/Kaustuvkunal /Big=1Data/tree/master/ map-
reduce/src/ test/java/com/kk/test/mapreduce

MapReduce Use Cases

1. Find Top-N-Elements from a large data set

2. Sort item from large datatest (using TotalOrderPartitioner and Input
sampler)

3. Find common (facebook) friends

4. Processing large number of small file in hadoop using combine file input
format

5. Finding yearly maximum temperature using secondary sort

1. Finding Top-N-Elements

MapReduce is highly useful in when we need to fetch Top-N-elements from
large data set, for example

v top 10 salaries or top 50 highest paid employee from orgnisations dataset,
v' Top 10000 highest tax payers of the country,

v' Top hash-tag tweets of the month,

v' Top 5 tweeted candidate in an election etc..

https:/ /github.com /Kaustuvkunal/Big-Data /edit/master/map-
reduce/src/main/java/com/kk/mapreduce/topnproblem/

2. Sorting Large Dataset

v' MapReduce is an ideal framework for sorting large dataset

v' Hadoop distributions is packaged with input sampler and
TotalOrderPartitioner specially for sorting tasks.

v We can sort dataset using custom partitioner (when key frequency is
know to us) or using TotalOrderPartitioner

v Example of both methods, where we have fetched sorted country names
from a geographical data can be found

https:/ /github.com /Kkaustuvkunal /Big-Data/tree /master/map-
reduce/src/main/java/com/kk/mapreduce/totalordersort

3. Common Friends

v One use case of MapReduce is in finding common Facebook friends, given a
data set of person and her friends list.

v The sample solution is provide here

https://github.com/Kaustuvkunal/Big-Data/tree/master/map-
reduce/stc/main/java/com/Kk/mapreduce/commonfriends#reducer-input

4. Processing Small Files in Hadoop

v Hadoop is suitable for processing large files. What if we have many text
files of small sizes ? With Text-Input-Format, input split will process one
small file which is not efficient

v' Solution is to define a FileWritable to take file name along with its offset
as key and use Combine-File-Input-Format which will pack multiple files
into the same split

https:/ /eithub.com /Kaustuvkunal /Big-Data/tree /master/map-
reduce/src/main/java/com/kk/mapreduce/maxtempusingcombineinputfor
mart

5. Max Temp using secondary sort

A famous MapReduce application program is finding yearly maximum
temperature using secondary sort, which beautifully demonstrates usage of ,

v' Custom Writable
v' Key comparator

v' Group Comparator

https:/ /github.com /Kaustuvkunal /Big-Data/tree /master/map-
reduce/src/main/java/com/kk/mapreduce/secondarysort

References

** Apache MapReducehttps://hadoop:apache org/docs/12:7:5/hadoopmapreduce:
client/hadoop-mapreduce=client=core/MapReducelutorialihtml

¢ Google Fie Systems https://ai.google/research/ pubs/ pubsi

<» Hadoop-The Definitive Guide -4 Edition

