rk &

A PaC he S or:
It’s Eco Sy

Kaustuv Kunal

https://github.com/kaustuvkunal/Spark-Ecosystem-Tutorial

Contents

= Introduction

= Spark Features

= History & Versions
= Spark Architecture
= Cluster Execution

= Spark APIs
= RDD

= Shared Variables
= DataFrames
= Datasets

= Caching: Persist & Storage Levels
= Optimizers & Plans
= Installing Spark

T

-Sp

-Sp

ark Programming
Job Submission
Job Monitoring
Job Scheduling
Job Tuning
Job Testing

ark High Level Libraries
PySpark

Spark SQL

Spark Streaming
Structured Streaming
Spark MLIib

Spark GraphX

= Competitors & References

Spark Introduction

= A unified computing engine & set of libraries for parallel data
processing on computer clusters.

= Originally, designed as advancement of MapReduce for multiple parallel
operations such as iterative jobs (Machine learning Algorithm) and as
interactive data analysis tools.

= Spark libraries are written in Scala language.
L
'

Spark Features

= Distributed Processing: Underneath, in spark, all data is RDD(resilient
distributed data) a distributed, immutable object.

= Fault tolerance: RDD partitions forms DAG (directed acyclic graph). Any
lost partitions can be recreated using a mechanisms called lineage.

= In-memory cluster computing: Once a data is read into RAM, it can be
cached based on the available memory and reused without being read it
again from the disk.

= Multi language support : Spark jobs can be written in Scala, Python, R,
Java and QL.g PP P {LQ Y

= Multi task support: It has libraries for SQL, Streaming, machine learning
and graph tasks.

= Scalable: Manage and coordinate execution of tasks on data across a cluster
of computers. This cluster of machine i1s managed by cluster mangers (spark
standalone cluster manger, yarn, Mesos etc.,).

Spark History

2009

Research Spark Spark moved

Project 2010 Streaming to Apache 2014 2016

2017
Spark Deep 2019

UC Berkeley Spark is Open paper Software GraphX paper MLLib paper Learning Delta Lake
AMPLab Sourced Zahaira et al. Foundation Xin et al. Mengetal. Databricks Databricks

2010 2012 2013 2014 2015

2016 2018

p Summit Spark paper RDD paper Python APl Spark becomes SparkSOL paper TensorFrames MLFlow

scription Zahairaetal. Zahaira etal. added an Apache Top- Armbrust et al.
Level project

Hunter Databricks

Spark Versions

Spark 0.X.X (2012)
= RDD

= YARN support

Spark 1.X.X (2014)
= Spark SQL

Spark 2.X.X (2016)
Unified Dataset and DataFrames APIs

= SparkSession

= Structured Streaming € s
= Partition pruning

= Builtin support for Hive features

= More optimization

= Spark 3.X.X (2020)
= Python pandas PySpark support
= Optimization techniques (Auto Broadcast Join & Dynamic Partition Pruning)
= Adaptive query execution

Spark Architecture

Driver Process Executors
l Spar‘k E I l Q
Session I '

r ! User code ! | g'
Cluster Manager'

—— e ————

Architecture Components

= Driver Program/Process
= Runs main function

Manage/Maintain information about spark application

Respond to user program/input

Analyze/schedule/distribute work across executor

= Executor Process
= Perform tasks/code that driver aiéigéns them
= Reports execution state back to driver

= Cluster Manager (in cluster mode)
= Keeps track of available resources

Architecture Salient Points

= User can specify how many executors should fall on each node through
configuration.

= Spark session object is entrance point of spark code, python and R jobs
translate code to generate spark session object.

Py+hon
Process

JVM

Spark
Session

R Process

Execution/Deployment Modes

= Spark Jobs can be executed locally (local mode) or on a distributed
system. Distributed execution has two deployment modes (client mode
& cluster mode)

= Local mode : Spark jobs can be executed locally just as a program using
spark libraries. Both driver and executor runs on single JVM.

L

r N

= Client mode : The driver runs in the client process, and the application
master is only used for requesting resources from YARN.

= Cluster mode : Spark driver runs inside an application master process which

is managed by respective cluster mangers. Driver and executor runs on
different machines.

Spark Cluster Execution

Worker Node

Executor | Cache

Driver Program / Task || Task
[Spark cluster components
SparkContext Cluster Manager
\ Worker Node
v

Executor | Cache

Task Task

Execution Sequence

1. The main Driver program initializes SparkContext object.

2. SparkContext connects to Cluster Managers (in order to execute
Spark applications as independent sets of processes on a cluster).

3. Cluster Managers allocate resources across applications.
4. Spark Application acquires Executors on nodes in the cluster.
5. SparkContext sends applicatignicode to Executors.

6. SparkContext sends tasks to the Executors to run.

Execution Salient Points

= Each application gets its own executor processes. Thus 1solate
applications on schedulers side (each driver schedules its own tasks) and
executor side (tasks from different applications run in different JVMs).
Downside is, data cannot be shared across different Spark applications.

= Driver program must listen for and accept incoming connections from its
executors throughout its lifetime.

= Driver should run close to the V&\Qf\ker nodes.

Supported Cluster Manager

= Following cluster managers are supported by Spark,

= Standalone : Default cluster manager included with Spark that makes it easy
to set up a cluster.

= Apache Mesos : A general cluster manager that can also run Hadoop
MapReduce and service applications.

= Hadoop Yarn : The default resource manager of Hadoop .

= Kubernetes : An open-source syste/\m for automating deployment, scaling,
and management of containerized. épplications.

Execution Arguments

= Application :
= Application Jar : Path to a bundled jar including your application and all
dependencies

= Driver Program : Main program location & name

= Cluster manager :
» Deploy mode : Client/Cluster ¥~
= Worker node : node used by executors
= Executor : are JVMs that run on Worker nodes.

Execution Terms

= Task : Task 1s executed as a single thread in an Executor

= Partition : Data is split into Partitions so that each Executor can operate
on a single part, enabling parallelization

= Shuffle : Refers to an operation where data is re-partitioned(shuffles)
across a Cluster, e.g. join and any operation that ends with ByKey() will

trigger a Shuffle

'
= Stage : Sequence of Tasks that dan all be run together, in parallel,
without a shuffle

= Job : Job 1s a sequence of Stages, triggered by an Action such as,
count(), foreachRdd(), collect(),

Spark APl Ecosystem

Structured Advanced Libraries &
S+reaming Analy’rics Eco«;ys’rem

———————

Structured APls

Datasets DataFraomes

Low-level APIs

Distributed Variables

RDD (Resilient Distributed
dataset)

= An RDD is a read-only (immutable) collection of objects, partitioned
across a set of machines that can be rebuilt if a partition is lost.

= Normally, RDD are cached data, however datasets that do not fit in
memory are either spilled to disk or recomputed on the fly when needed,
as determined by the RDD’s storage level

= RDD rebuild lost data on failure using lineage. Spark keeps track of set
of dependencies b/w RDD partitions called a lineage graph (DAG)

= [t can be Scala, Java or Python object.

Cache

Memo:!

CPU

RDD Features

= Distributed
= Immutable (read only)
= Resilient (recovered lineage) i.e. ability to recreate

= Compile-time Type Safe 1.e. throws compile time error if there 1s an
data type operation error

= Can be Structured or Unstructured(logs, tweets, articles)

= Lazy evolution (materialized at action level only and not transformation
level 1.e. execution starts only when there 1s an action)

Creating RDD

= Parallelizing an existing collection in your driver program or referencing
a dataset in an external storage system. Spark lets programmers
construct RDDs in four ways,

= From a file : in a shared file system, such as the Hadoop Distributed File
System (HDFS)

= Parallelizing : which means dividing it into a number of slices that will be
sent to multiple node

= By transforming an existing RDID. fﬁming an operation called flatMap, which
passes each element through a user-provided function of type A = List[B],
expressed using flatMap, including map

= Persistence : User can alter the persistence of an RDD through two action,
cache action, save action

RDD Operations

= Transformation : Generates a new RDD from an existing one. Example
map(), filter(). It is computed lazily 1.e., only at their first use of Action.

= Action : Triggers a computation on a RDD and does something with the
results 1.e. either returning them to the user, or saving them to external
storage. eg., count(), first().

: .. \~ : :
Q) How to check if a function is Transformation or Action ?

Ans) See the return type. If its an RDD it 1s transformation othewise
Action.

RDD Transformations

[E—

map(func)

filter(func)

flatMap(func)

mapPartitions(func)

mapPartitions WithIndex(func)
sample(withReplacement, fragtien, seed)
union(otherDataset)
intersection(otherDataset)
distinct([numTasks]))
groupByKey([numTasks])

Wl N Sl B WS

[EN—
S

RDD Transformation

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

reduceByKey(func, [numTasks])
aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])
sortByKey([ascending], [numTasks])

join(otherDataset, [numTasks])

cogroup(otherDataset, [numTasks])
cartesian(otherDataset) VA

pipe(command, [envVars])

coalesce(numPartitions)

repartition(numPartitions)

repartitionAndSortWithinPartitions(partitioner)

RDD Actions

10.

11.

12.

reduce(func)

collect()

count()

first()

take(n)

takeSample (withReplacement,num, \Lseed])
takeOrdered(n, [ordering]) s
saveAsTextFile(path)

countByKey()

foreach(func)

saveAsSequenceFile(path) (Java and Scala)
saveAsObjectFile(path) (Java and Scala)

Actions Allowing Parallel
Operations

= Reduce
= Collect

= Foreach

s

Shared Variables

= When Spark runs a function in parallel as a set of tasks on different
nodes, if a variable needs to be shared across tasks, or between tasks and
the driver program, it ships a copy of shared variable used in the
function to each task.

= Spark supports two types of shared variables
1. Broadcast Variables

2. Accumulators A

Broadcast Variables

= Used to cache a value in memory on all nodes.

= If a large read-only piece of data (e.g., a lookup table) 1s used in multiple
parallel operations, it is preferable to distribute it to the workers only
once instead of packaging it with every closure. Spark lets the
programmer create a “broadcast variable” object that wraps the value
and ensures that it is only copied to each worker once.

T

>>> broadcastVar = sc.broadcast([1, 2, 3])
<pyspark.broadcast.Broadcast object at 0x102789f10>

>>> broadcastVar.value
[ily 25 &)l

Accumulators

= The write only global variable that can be shared across tasks. (similar to

counters of MapReduce).Updated by each task and the aggregated result
is propagated to the driver program.

= These are variables that workers can only “add” to using an associative
operation and that only the driver can read.

>>> accum = sc.accumulator()

>>> accum

Accumulator<id=0, value=0>

>>> sc.parallelize([1, 2, 3, 4]).foreach(lambda x: accum.add(x))

10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

>>> accum.value
10

DataFrame

= Represents a data table with rows and columns
= Uses schema for defining column name and type (metadata)
= Can span across clusters

= Can be constructed from a wide array of sources such as, structured data
files, tables in Hive, external databases or existing RDDs.

= Available in Scala, Java, Pythongand R

= Introduced in 1.3 release

= Used in Spark-SQL

Note: Do not confuse Spark DataFrame with panda DataFrame. Infact,with spark interface
panda DataFrame can be easily converted into spark dataframe.

@

Dataset

= Type-Safe distributed collection of data type
= Provides object oriented programming interface

= Available for Java & Scala and not available for python and R as they
are dynamically typed language

= Introduced in 1.3 release
= On Dataset, ‘Collect’ call will cgllect object of declared type only
= DataFrame is a Dataset organized into named columns

= Both Dataset and DataFrame can be used in same application, Dataset
after operation can be converted in DataFrame

Dataset Benefits

= Instead of using Java serialization or Kryo, Datasets use a specialized
Encoder to serialize the objects for processing or transmitting over the
network.

= Allows Spark to perform many operations like filtering, sorting and
hashing without deserializing the bytes back into an object.

= Provides the benefits of RDDs (strong typing, ability to use powerful
lambda functions) with the benefits of Spark SQL’s optimized execution
engine. &Y

= Conceptually Spark Dataset is a DataFrame column with additional type
safety.

= [t means you get all the benefits of Catalyst and Tungsten optimization.
It includes logical and physical plan optimization, vectorized operations
and low level memory management.

RDD to Dataset/DataFrame

= An RDD can be converted into Dataset(or DataFrame in python) by two
methods,
1. By Inferring the RDD Schema Using Reflection

2. By Programmatically Specifying the Schema

T

Persist

= RDD are recomputed each time we run an ‘Action’. To avoid this, store
them in memory using persist. RDD.persist() .

= Persist on disk 1s also possible and useful in Big Data.

s

RDD Storage Levels

= MEMORY_ONLY : default level, it stores the RDD as deserialized Java objects in the JVM; If the
RDD doesn't fit in memory, some partitions will not be cached and recomputed each time they're
needed

= MEMORY_AND_DISK: RDD as deserialized Java objects in the JVM; If the RDD doesn't fit in
memory, store the partitions that don't fit on disk, and read them from there when they're needed

= MEMORY_ONLY_SER: Stores RDD as serialized Java objects; space-efficient

= MEMORY_AND DISK SER : similar to MEMORY ONLY_ SER, but spill partitions that don't fit in
memory to disk

A
= DISK ONLY : stores the RDD partitions 0n1§/ on disk.

= MEMORY_ONLY_2:same as MEMORY_ ONLY, but replicate each partition on two cluster nodes

= MEMORY_AND_ DISK 2 :same as MEMORY_ AND DISK, but replicate each partition on two
cluster nodes

= OFF_HEAP : similar to MEMORY_ ONLY SER, but store the data in off-heap memory (Off-heap
memory offloads values to a storage area that is not subject to Java GC)

Partitions

= To perform execution in parallel, spark break up data in chunks called
partition.

= Collection of rows sits on a physical machine
= Allows executor to run parallel
= No of executor is equal no of parallel tasks

= With DataFrame no need to manipulate partition explicitly, it has to be
done by configuration

Spark Execution Steps

1. Submit Job : User Submit spark Job (PySpark, Spark SQL etc.,)

2. Logical Plan Creation : If valid, spark converts job into a Logical
Plan (1t uses catalog which 1s kind of meta-store)

3. Physical plan Creation : Transforms logical plan into physical plan (
execution strategies i.e. series of RDD transformation) also checks for

optimization along the way

'
4. Physical plan Execution : Sf)Lark executes physical plan(RDD
manipulations) on cluster (by generating java byte code)

* Use explain to see the physical plan

Optimization

= Process of converting logical plan to physical plan

= Spark uses following two engines to optimize and run the queries, they
are mostly black-boxed for developers

1. Catalyst
2. Tungsten

T

Catalyst

= Optimizes structural queries — expressed in SQL or DataFrame/Dataset
APIs, to reduce the runtime of programs and save cost.

= Generates an optimized physical query plan from the logical query plan
by applying a series of transformation e.g. predicate pushdown, column
pruning, and constant folding.

= Are mostly of two kinds ,

1. Rule-based optimization: indioa,téLs how to execute the query from a set of
defined rules

2. Cost-based optimization : generates multiple execution plans and compares
them to choose the lowest cost one

Tungsten

= Improve Spark execution by optimising Spark jobs for CPU and
memory efficiency through,
= Off-Heap Memory Management : using binary in-memory data
representation, aka Tungsten row format and managing memory explicitly

= Cache Locality : is about cache-aware computations with cache-aware layout
for high cache hit rates

= Whole-Stage Code Generation
T

Spark Installation Steps

1. Download : Choose Spark release package type from Spark official
download page

2. Set environments variables : SPARK HOME,
HADOOP_ HOME(for yarn clusters) , PYSPARK PYTHON,
SPARK DIST CLASSPATH has to be set

3. Start spark

4. Validate UI & Master urls
= http://<host>:4040/ (Spark UI - displaying spark jobs)

= http://<host>:8080/ (Spark master - It is the resource manager for the Spark
Standalone cluster to allocate the resources)

T

Spark Consoles

= Following interactive spark console are available for users,
= PySpark : /bin/pyspark
= Scala : /bin/spark-shell
= SQL: /bin/spark-SQL
= For cloud support

Job Submission

= Jobs shall be submitted using ‘spark-submit’ command

./bin/spark-submit \
-—class <main-class> \
--master <master-url> \
——deploy-mode <deploy-mode> \
--conf <key>=<value> \
. # other options
<application-jar> \
[application-arguments]

Job Submission Arguments

= --Class : main driver class

= --Master : master URL for the cluster

= —-deploy-mode : client or cluster mode

= --conf : Spark configuration property in key=value format

= application-jar : bundled jar including spak application and all dependencies

. anlication-arguments : Arguments passed to the main method of application main
class, if any @

= --supervise : specify for standalone cl}vlkster mode; supports restarting application
automatically 1f 1t has exited with non-zero exit code

= --executor-memory : specify amount of memory to use per executor process
= --total-executor-cores : the number of cores to use on each executor
= --num-executors : specify number of executers

= --queue : name of queues application need to be submitted

Job/Application Monitoring

= Each driver program has a web Ul
= It can be accessed on port 4040 1.e. http://<driver-node>:4040

= [f multiple Spark Contexts are running on the same host, they will bind
to successive ports beginning with 4040 then 4041, 4042, etc.

= Uses can also construct the UI of an application through Spark’s history
server ‘sbin/start—history—server.g]g\’
\

= Default URL of history server is http://<server-host>:18080

= Job metrics, are also available as JSON for developers to create new
visualizations and monitoring tools for Spark

Application Monitoring

= Information about the application includes,
= List of scheduler stages and tasks
= Summary of RDD sizes & memory usage
= Environmental information
= Running Executors information

s

Job Scheduling

= Cluster managers, that Spark runs on, provide scheduling facilities.

= Within each Spark application, multiple “jobs” (Spark actions) may be
running concurrently if they were submitted by different threads.

= Spark also includes a fair scheduler to schedule resources within each
SparkContext. (fair scheduler aims to maximize overall CPU utilization
while also maximizing interactive performance).

'
= Dynamic Resource Allocation iéLby default false, to enable set below
two properties to true,

= spark.dynamicAllocation.enabled
= spark.dynamicAllocation.shuffleTracking.enabled

Job Tuning

= Serialization : Storing RDD is serialized form (Kryo serialization)

= conf.set("spark.serializer", "org.apache.spark.serializer. KryoSerializer")

= Use the serialized storage levels in the RDD persistence API, such as
MEMORY ONLY_ SER

= Parallelism : Try setting the level of parallelism for each operation high
enough

- Data Structure choices : Choose 'data structure with less overhead e. g.,

= Use arrays of objects, and primitive types, instead of the standard collection
classes

= Avoid nested structures with a lot of small objects

Job Testing

= Test locally outside clusters

= Purpose 1s to prevent bugs propagation in clusters

= Test the logic and not the Spark
= IDE is preferred over notebook for testing & debugging

= To test, simply create a SparkContext in your test with the master URL
set to local, run your operationsga¥d then call SparkContext.stop() to
tear it down. Make sure you stop the context within a finally block or the
test framework’s tear Down method, as Spark does not support two
contexts running concurrently in the same program.

= For Pyspark shall also use ‘unittest.mock’ library

PySpark

= Python on Spark

= Python advantages,
= Fastest growing

= Interactive
= Language of machine learning

T

PySpark Data Types

* ByteType()

= ShortType()

= IntegerType()

= LongType()

= FloatType()

= DoubleType()

= StringType()

= BinaryType()

= BoleanType()

= TimestampType()

= DateType()

= ArrayType(elementType,[ContainsNull].)
= MapType(keyType, valueType[valueContainNull])
= StructType(fields)

= StructField(name, dataType,[nullable])

PySpark Data Sources

= PySpark supports following data source,
= CSV
= JSON
= Parquet
= ORC
= JDBC/ODBC
= Plain-text Files

Spark SQL

= Spark SQL is a Spark module for structured data processing

= Spark SQL extends Spark with a declarative DataFrame API to allow
relational processing

= When working with data with schema Spark SQL 1s preferred. It
provides benefits such as,

= Loading data from variety of sources (JSON, hive, parquet)
= SQL query interface through staﬁdéﬁ”d JDBC/ODBC connector

= Rich integration b/w SQL and Python/Java/Scala code with ability to join
RDD and SQL tables and custom functions

= There are multiple ways to interact with Spark SQL including, SQL
interface, DataFrame and the Dataset API

Spark SQL Goals

= Support relational processing both within Spark programs (on native
RDDs) and on external data sources using programmer friendly API.

= Provide high performance using established DBMS techniques.

= Easily support new data sources, including semi-structured data and
external databases.

« Enable extension with advanced apalytics algorithms such as graph
processing and machine learningk;

Spark SQL Essentials

= SqlContext : is entry point of SparkSQL which can be received from
sparkContext.

= Schema RDD : Used in implementing Spark SQL, are RDD of row
object each representing a record, Can be created from external data
sources, query results or from regular RDDs.

= DataFrame Schema : can be defined explicitly (preferred for
production system) or left for datdfsource.

= Persistent Tables : DataFrames can also be saved as persistent tables
into Hive metastore using the saveAdsTable command. Bucketing and
sorting are applicable only to persistent tables.

SQL (DF) Transformation

= Following SQL operation can be performed in DataFrame tables,
= Adding rows or columns
= Removing rows or columns
= Transforming a row into column
= Changing the order of rows based on values in columns

T

Views in Spark SQL

= Temporary views are session-scoped and will disappear if the session
that creates it terminates.

= If you want to have a temporary view that is shared among all sessions
and keep alive until the Spark application terminates, you can create a
global temporary view.

T

Apache Arrow : Panda DF to
Spark DF

= Apache Arrow is an in-memory columnar data format that is used in
Spark to efficiently transfer data between JVM and Python processes.

= We can Create a Spark DataFrame from a Pandas DataFrame using

Arrow and convert the Spark DataFrame back to a Pandas DataFrame
using Arrow.

T

Query Planning in Spark-SQL

, Logical Physical
Analysis Optin?ization PIa};\ning Geg:;jaet}ion
SQL Query . % Selected
&gﬁ:?g;ﬂ—[mgical PIanHngit::l'ﬁ:n ! Py (12 Pl 1 ROD
DataFrame ‘ & :

Catalog

Spark Streaming

= High level llibrary of Spark for processing continuously flowing streaming
data

= Uses micro batch Architecture

= Split data stream into batches of as low as 100 milliseconds and exactly-
once fault-tolerance guarantees

= Each batch of data is treated as RDD and processed using RDD operations
= Processed results are pushed out in Batches

= In Spark 2.3, A new low-latency processing mode called Continuous
Processing is introduced, it can achieve end-to-end latencies as low as 1
millisecond with at-least-once guarantees

= The fundamental stream unit is DStream which is basically a series of RDDs
to process the real-time data

Spark Streaming

SKafka 1

‘ ;alrll; S!r::\mg architecture {AZ "~ HQF_S ¥
HDFS/S3 Sp Qr K , ’:> Databases
Kinesis Streaming Dashboards

Twitter

Dstream (Discretized Stream)

= Represents a continuous stream of data

= Can be created either from input data streams from sources such as Kafka,
Flume, and Kinesis, or by applying operations on other Dstreams

= Stream pipeline is registered with some operations and the Spark polls the
source after every batch duration

= Dstream support the following operation,
= Map, flatMap, filter \Q\L
= count
= reduce
= countByValue
= reduceByKey
= join
= updateStateByKey

Streaming Flow

input data batches of batches of
siream Spark | inputcata | Spark processed qata

Streaming fngine L,

Persist in DStream

= DStream generated by window-based operations are automatically
persisted

= Call persist() to Persist every RDD of that DStream in memory
= For received data over the network it replicate data in two nodes
= Default persistence level of DStream keeps the data serialized in

memo
ry & <

Streaming Checkpointing

= Checkpoint is storing enough information to recover from failures.

= Use the checkpointing to save the progress of a job to be used in case of
failure

= Metadata checkpoints includes Configurations, operations, batches
= Data checkpoints includes RDDs of stateful transformations
= To configure use ‘Context.checkp®int(checkpoint directory)’

= Accumulators and Broadcast variables cannot be recovered from
checkpoint in Spark Streaming for that create lazily instantiated
singleton instances for Accumulators and Broadcast variables so that
they can be re-instantiated after the driver restarts on failure

Streaming
PerformanceTuning

= Set the right batch size such that the batches of data can be processed
as fast as they are received

= Reduce the processing time of each batch by,
= Parallelizing the data receiving
= Creating multiple input DStreams
= Reduce the block interval by configuring ‘spark.streaming.blockInterval’

T

Streaming Memory Tuning

= Enabling Kryo Serialization

= Clearing old data frequently (streamingContext.remember)

A

Streaming ML Operations

= Streaming machine learning algorithms (e.g. Streaming Linear
Regression, Streaming KMeans, etc.) can simultaneously learn from the
streaming data as well as apply the model on the streaming data.

= Alternatively, for much larger class of machine learning algorithms, you
can train a learning model offline (i.e. using historical data) and then
apply the model online on streaming data.

T

Streaming Limitations

= Susceptible to data loss: Spark streaming put the data in a batch even if
the event 1s generated early and belonged to the earlier batch which may
result in less accurate information as it 1s equal to the data loss

= Spark Streaming still don’t have any support for python 3

T

Structured Streaming

= Streaming Engine built on Spark SQL for Realtime Structured data
processing

= Production ready since spark 2.2
= Easily apply any SQL query on streaming data
= Uses DataFrames to process streams of data pouring into the analytics

engine (not Dstream
gine () VA

= As DataFrame API provides a higher level of abstraction it minimizes
latency compare to Spark-Streaming

Structured Streaming
Processing

= Key idea in Structured Streaming is to treat a live data stream as a table
that is being continuously appended

= Polls the data after some duration, based on the trigger interval

= Received data 1n a trigger is appended to the continuously flowing data
stream 1.e. DataFrame (or dataset)

= Structured Streaming only reads tk;\e latest available data from the
streaming data source, processe§ it incrementally to update the result,
and then discards the source data

Structured Streaming Fault
Tolerance

= Structured Streaming engine uses checkpointing & write-ahead logs to
record the offset range of the data being processed in each trigger.

= Structured streaming has applied below two conditions to recover from
any errof,

1. The source must be replayable

2. The Sinks must support idempotent operations to support reprocessing in
case of failures « L

Structured Streaming
Features

= Allow window-based aggregations using window keyword

= Watermarking, lets the engine automatically track the current event
time in the data and attempt to clean up old state accordingly

= Supports Joining a streaming Dataset/DataFrame with a static
Dataset/DataFrame as well as another streaming Dataset/DataFrame

= Deduplication: Eliminate dupliia\tg or redundant information using a
unique identifier in the events (With or without watermark)

Structured Streaming
Preconditions

= By default schema is should to be pre-specified

= Directories that make up the partitioning scheme must be present when
the query starts and must remain static

= Arrival delays : late data within the threshold will be aggregated, but
data later than the threshold will start getting dropped. Threshold can be

manually defined
T

Structured Streaming
Limitations

= Following Dataset actions, will not work on streaming Datasets,
= count()
= foreach()

= show()

= Following type of operations are not supported on Spark Streaming,
= Multiple streaming aggregations
- Limit and take the first N rows &
= Distinct operations
= Sorting

Continuous Processing

= A new experimental streaming execution mode introduced in Spark 2.3
enables low (~1 ms) end-to-end latency with at-least-once fault-
tolerance guarantees

= To run a supported query in continuous processing mode, all is needed
is to specify a continuous trigger with the desired checkpoint interval as
a parameter (trigger settings of a streaming query defines the timing of

streaming data processing) "a
'S

MLIib

= Spark’s machine learning (ML) library makes practical machine learning
scalable and easy.

= [t provides tools for,

= ML Algorithms: Classification, Regression, Clustering, and Collaborative
filtering

Featurization: Feature Extraction, Transformation, Dimensionality Reduction,
and Selection "

Pipelines: Tools for constructing\, evaluating, and tuning ML Pipelines

Persistence: Saving and load algorithms, models, and Pipelines

Utilities: Includes linear algebra, statistics, data handling, etc.

= The primary Machine Learning API for Spark is DataFrame (not RDD)

Spark-ML

= Not an official name but occasionally used to refer to the MLIlib
DataFrame-based API

= Spark MLIib can also used with RDD, while Spark-ML refers to
Dataframe support only

T

Statistic Operations Support

= Basic Statistics support for Dataframe API
= Summary Statistic
= Correlation : to calculate correlations between series
= Hypothesis testing : ChiSquareTest
= Summarizer

¢ %
= Basic Statistics support for RDD'API
= Stratified Sampling
= Random Data Generation
= Kernel Density Estimation

Supported Data Sources

= Support for general data sources
= Parquet
= CSV
= JSON
= JDBC

= Support for specific data sources

= Image T

= LIBSVM format

RDD - Supported Data Type

= Local vector
= Labeled point
= Local matrix

= Distributed matrix
= RowMatrix
= IndexedRowMatrix A
= CoordinateMatrix
= BlockMatrix

ML Pipelines

= APIs to create and tune practical machine learning pipelines

= Allow combining Model’s transformer, estimators, persistence, crosss
validation, etc.,

= Transformer : is an algorithm which can transform one DataFrame into
another DataFrame

= Estimators : is an algorithm which can be fit on a DataFrame to produce a
Transformer e

L
= Pipeline : chains multiple Trans}’ormers and Estimators together to specify an
ML workflow

= ML persistence : save a model or a pipeline to disk for later use

MLIib Feature Engineering

Feature Extractors DF APIs

= TF-IDF
= Word2Vec
= CountVectorizer

= FeatureHasher
&

MLIib Feature Engineering

Feature Transformers DF APIs

= Tokenizer

StopWordsRemover

n-gram

Binarizer

= PCA

= PolynomialExpansion L
= Discrete Cosine Transform (DCT)

= StringIndexer
= IndexToString
= OneHotEncoder
= VectorIndexer

= Interaction

Normalizer
StandardScaler
RobustScaler
MinMaxScaler
MaxAbsScaler
Bucketizer
ElementwiseProduct
SQLTransformer
VectorAssembler
VectorSizeHint

QuantileDiscretizer Imputer

MLIib Feature Engineering

Feature Selectors DF APIs
= VectorSlicer
= RFormula
= ChiSqgSelector
= UnivariateFeatureSelector
= VarianceThresholdSelector
T

Feature Engineering Support
For RDDs

= TF-IDF
= Word2Vec
= StandardScaler

= Normalizer

= ChiSgSelector .
\
= ElementwiseProduct %

= PCA

MLIib Classification Models

= Logistic regression
= Binomial logistic regression
= Multinomial logistic regression

= Decision tree classifier

= Random forest classifier

= Gradient-boosted tree classifier

= Multilayer perceptron classifier ¥ %
= Linear Support Vector Machine

= One-vs-Rest classifier

= Naive Bayes

= Factorization machines classifier

MLIib Regression

= Linear regression
= Generalized linear regression
= Decision tree regression
= Random forest regression
= Gradient-boosted tree regression
'
. . 'S
= Survival regression

= [sotonic regression

= Factorization machines regressor

Models

MLIib Unsupervised Models

= K-means

= Latent Dirichlet allocation (LDA)
= Bisecting k-means

= Streaming k-means

= Gaussian Mixture Model (GMM)
= Power Iteration Clustering (PIC)Q >

= Collaborative Filtering

= FP (Frequent Pattern)-Growth

MLIib Other APls Support

= Cross-Validation (Model/ Hyperparameter selection)
= Train-Validation Split

s

Spark Graph-X

= Spark component for graphs and graph-parallel computation

= Extends the Spark RDD by introducing a new Graph abstraction (a
directed multigraph with properties attached to each vertex and edge)

= Support graph computation with operators such as subgraph,
joinVertices, and aggregateMessages

= Includes a growing collection of graph algorithms and builders to
simplify graph analytics tasks &

= No PySpark support yet for GraphX

Spark Competitors

= Apache Apex

= Apache Flink (Streaming)
= H20 (Spark MLIib)

= Hive (Spark-Sql)

= Apache Strom (Streaming)
Y

References

= https://spark.apache.org/
= Spark: The definitive guide Bill Chambers & Matei Zaharia

= MLIib: Machine Learning in Apache Spark, Journal of Machine
Learning Research 17 (2016) 1-7

= Spark SQL: Relational Data Processing in Spark, Michael Armbrust
et.al,. ¢
&

